52,560 research outputs found

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    A Survey of Requirements Engineering Methods for Pervasive Services

    Get PDF
    Designing and deploying ubiquitous computing systems, such as those delivering large-scale mobile services, still requires large-scale investments in both development effort as well as infrastructure costs. Therefore, in order to develop the right system, the design process merits a thorough investigation of the wishes of the foreseen user base. Such investigations are studied in the area of requirements engineering (RE). In this report, we describe and compare three requirements engineering methods that belong to one specific form of RE, namely Goal-Oriented Requirements Engineering. By mapping these methods to a common framework, we assess their applicability in the field of ubiquitous computing systems

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    Comparing Techniques for Mobile Interaction with Objects from the Real World.

    Get PDF
    Mobile interaction with objects from the real world is gaining in popularity and importance as different mobile technologies increasingly provide the basis for the extraction and usage of information from physical objects. So far, Physical Mobile Interaction is used in rather simple ways. This paper presents a comparison and evaluation of more complex and sophisticated techniques for Physical Mobile Interaction. The results indicate the importance of usability guidelines that pay attention to these new interaction techniques

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning
    • …
    corecore