18,879 research outputs found

    Service-aware multi-resource allocation in software-defined next generation cellular networks

    Get PDF
    Şefik Şuayb Arslan (MEF Author)Network slicing is one of the major solutions needed to meet the requirements of next generation cellular networks, under one common network infrastructure, in supporting multiple vertical services provided by mobile network operators. Network slicing makes one shared physical network infrastructure appear as multiple logically isolated virtual networks dedicated to different service types where each Network Slice (NS) benefits from on-demand allocated resources. Typically, the available resources distributed among NSs are correlated and one needs to allocate them judiciously in order to guarantee the service, MNO, and overall system qualities. In this paper, we consider a joint resource allocation strategy that weights the significance of the resources per a given NS by leveraging the correlation structure of different quality-of-service (QoS) requirements of the services. After defining the joint resource allocation problem including the correlation structure, we propose three novel scheduling mechanisms that allocate available network resources to the generated NSs based on different type of services with different QoS requirements. Performance of the proposed schedulers are then investigated through Monte-Carlo simulations and compared with each other as well as against a traditional max-min fairness algorithm benchmark. The results reveal that our schedulers, which have different complexities, outperform the benchmark traditional method in terms of service-based and overall satisfaction ratios, while achieving different fairness index levels.WOS:000430793600019Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ1 - Q2ArticleUluslararası işbirliği ile yapılmayan - HAYIRMart2018YÖK - 2017-1

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)
    corecore