164,447 research outputs found

    FCFS Parallel Service Systems and Matching Models

    Get PDF
    We consider three parallel service models in which customers of several types are served by several types of servers subject to a bipartite compatibility graph, and the service policy is first come first served. Two of the models have a fixed set of servers. The first is a queueing model in which arriving customers are assigned to the longest idling compatible server if available, or else queue up in a single queue, and servers that become available pick the longest waiting compatible customer, as studied by Adan and Weiss, 2014. The second is a redundancy service model where arriving customers split into copies that queue up at all the compatible servers, and are served in each queue on FCFS basis, and leave the system when the first copy completes service, as studied by Gardner et al., 2016. The third model is a matching queueing model with a random stream of arriving servers. Arriving customers queue in a single queue and arriving servers match with the first compatible customer and leave immediately with the customer, or they leave without a customer. The last model is relevant to organ transplants, to housing assignments, to adoptions and many other situations. We study the relations between these models, and show that they are closely related to the FCFS infinite bipartite matching model, in which two infinite sequences of customers and servers of several types are matched FCFS according to a bipartite compatibility graph, as studied by Adan et al., 2017. We also introduce a directed bipartite matching model in which we embed the queueing systems. This leads to a generalization of Burke's theorem to parallel service systems

    Recursive Hardware-as-a-Service (rHaaS) and Fast Provisioning

    Full text link
    Hardware as a Service (HaaS) is a new service being developed by the Massachusetts Open Cloud (MOC) to allow physical servers to be allocated to clients in the same way that virtual servers are in existing IaaS clouds. This poster describes the new recursive HaaS project and the fast provisioning customization we are developing. Recursive HaaS allows a HaaS service to be layered on top of an existing one. It will allow testing of new features at performance and scale without affecting the production service. It will also allow clients to host their own HaaS on top of a base HaaS to provide, potentially customized, services to their users. An example customization we are developing is a fast provisioning service that can be used between tenants that have some degree of trust in each other. It will allow nodes to be moved between customers (and a service installed) in seconds, rather than the minutes required by base HaaS

    Scheduling Storms and Streams in the Cloud

    Full text link
    Motivated by emerging big streaming data processing paradigms (e.g., Twitter Storm, Streaming MapReduce), we investigate the problem of scheduling graphs over a large cluster of servers. Each graph is a job, where nodes represent compute tasks and edges indicate data-flows between these compute tasks. Jobs (graphs) arrive randomly over time, and upon completion, leave the system. When a job arrives, the scheduler needs to partition the graph and distribute it over the servers to satisfy load balancing and cost considerations. Specifically, neighboring compute tasks in the graph that are mapped to different servers incur load on the network; thus a mapping of the jobs among the servers incurs a cost that is proportional to the number of "broken edges". We propose a low complexity randomized scheduling algorithm that, without service preemptions, stabilizes the system with graph arrivals/departures; more importantly, it allows a smooth trade-off between minimizing average partitioning cost and average queue lengths. Interestingly, to avoid service preemptions, our approach does not rely on a Gibbs sampler; instead, we show that the corresponding limiting invariant measure has an interpretation stemming from a loss system.Comment: 14 page

    ARES: Adaptive, Reconfigurable, Erasure coded, atomic Storage

    Full text link
    Atomicity or strong consistency is one of the fundamental, most intuitive, and hardest to provide primitives in distributed shared memory emulations. To ensure survivability, scalability, and availability of a storage service in the presence of failures, traditional approaches for atomic memory emulation, in message passing environments, replicate the objects across multiple servers. Compared to replication based algorithms, erasure code-based atomic memory algorithms has much lower storage and communication costs, but usually, they are harder to design. The difficulty of designing atomic memory algorithms further grows, when the set of servers may be changed to ensure survivability of the service over software and hardware upgrades, while avoiding service interruptions. Atomic memory algorithms for performing server reconfiguration, in the replicated systems, are very few, complex, and are still part of an active area of research; reconfigurations of erasure-code based algorithms are non-existent. In this work, we present ARES, an algorithmic framework that allows reconfiguration of the underlying servers, and is particularly suitable for erasure-code based algorithms emulating atomic objects. ARES introduces new configurations while keeping the service available. To use with ARES we also propose a new, and to our knowledge, the first two-round erasure code based algorithm TREAS, for emulating multi-writer, multi-reader (MWMR) atomic objects in asynchronous, message-passing environments, with near-optimal communication and storage costs. Our algorithms can tolerate crash failures of any client and some fraction of servers, and yet, guarantee safety and liveness property. Moreover, by bringing together the advantages of ARES and TREAS, we propose an optimized algorithm where new configurations can be installed without the objects values passing through the reconfiguration clients

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page

    Does Tipping Help to Attract and Retain Better Service Workers?

    Get PDF
    A survey of several hundred restaurant servers in the United States found that servers’ attitudes toward working for tips and average tip sizes were weakly related (at best) to their service-orientation, intended job-tenure, and occupational-tenure. These findings suggest that tipping does not substantially help to attract and retain more service-oriented workers. Restaurateurs can eliminate tipping at their restaurants without fear that doing so will reduce the quality of their wait-staff

    Holistic Resource Management for Sustainable and Reliable Cloud Computing:An Innovative Solution to Global Challenge

    Get PDF
    Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. These two objectives can present a potential conflict within cloud resource management decision making that must balance between service consolidation and replication to minimize energy consumption whilst maximizing server availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively without affecting other Quality of Service parameters

    Analysis of Multiserver Retrial Queueing System: A Martingale Approach and an Algorithm of Solution

    Full text link
    The paper studies a multiserver retrial queueing system with mm servers. Arrival process is a point process with strictly stationary and ergodic increments. A customer arriving to the system occupies one of the free servers. If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server. A service time of each customer is exponentially distributed random variable with parameter μ1\mu_1. A time between retrials is exponentially distributed with parameter μ2\mu_2 for each customer. Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as μ2\mu_2 increases to infinity. As μ2\mu_2\to\infty, the paper also proves the convergence of appropriate queue-length distributions to those of the associated `usual' multiserver queueing system without retrials. An algorithm for numerical solution of the equations, associated with the limiting queue-length distribution of retrial systems, is provided.Comment: To appear in "Annals of Operations Research" 141 (2006) 19-52. Replacement corrects a small number of misprint

    Deceit: A flexible distributed file system

    Get PDF
    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness
    corecore