215,730 research outputs found

    Model-Driven Service Level Management

    Get PDF
    Abstract. Service-level agreements (SLA) definition and monitoring are open issues within the IT Service Management (ITSM) domain. Our main goals are to propose a model-based approach to IT services SLA specification and compliance verification. The specification part will be accomplished by proposing a SLA language -a domain specific language (DSL) for defining quality attributes as non functional requirements (NFRs) in the context of ITSM. Its metamodel will be an extension of the meta-model of an adopted process modeling language for IT services. As such, it will be possible to ground SLA definition on the corresponding IT service model constructs. This will allow that SLA monitoring and compliance validation could occur at a level of abstraction that is understood by all the stakeholders involved in the service specification

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    ํ˜‘์—… ๋กœ๋ด‡์„ ์œ„ํ•œ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜๊ณผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ํ•˜์ˆœํšŒ.๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•˜๋‚˜์˜ ์ž„๋ฌด๋ฅผ ํ˜‘๋ ฅํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ์Šต์€ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ ์ด๋Ÿฌํ•œ ๋ชจ์Šต์ด ์‹คํ˜„๋˜๊ธฐ์—๋Š” ๋‘ ๊ฐ€์ง€์˜ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋จผ์ € ๋กœ๋ด‡์„ ์šด์šฉํ•˜๊ธฐ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋ช…์„ธํ•˜๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์„ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋กœ๋ด‡์ด๋‚˜ ์ปดํ“จํ„ฐ์— ๋Œ€ํ•œ ์ง€์‹์ด ์—†๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ˜‘๋ ฅํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ž‘์„ฑํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•  ๋•Œ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์˜ ํŠน์„ฑ๊ณผ ๊ด€๋ จ์ด ๊นŠ์–ด์„œ, ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ„๋‹จํ•˜์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ์œ„ ์ˆ˜์ค€์˜ ๋ฏธ์…˜ ๋ช…์„ธ์™€ ๋กœ๋ด‡์˜ ํ–‰์œ„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ƒˆ๋กœ์šด ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ๋ณธ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡๋ถ€ํ„ฐ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์ด ์ถฉ๋ถ„ํ•œ ๋กœ๋ด‡๋“ค์ด ์„œ๋กœ ๊ตฐ์ง‘์„ ์ด๋ฃจ์–ด ๋ฏธ์…˜์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์ด ๋ถ€์กฑํ•œ ์‚ฌ์šฉ์ž๋„ ๋กœ๋ด‡์˜ ๋™์ž‘์„ ์ƒ์œ„ ์ˆ˜์ค€์—์„œ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์–ธ์–ด๋Š” ๊ธฐ์กด์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์—์„œ๋Š” ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๋„ค ๊ฐ€์ง€์˜ ๊ธฐ๋Šฅ์ธ ํŒ€์˜ ๊ตฌ์„ฑ, ๊ฐ ํŒ€์˜ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ, ๋™์ ์œผ๋กœ ๋ชจ๋“œ ๋ณ€๊ฒฝ, ๋‹ค์ค‘ ์ž‘์—…(๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น)์„ ์ง€์›ํ•œ๋‹ค. ์šฐ์„  ๋กœ๋ด‡์€ ํŒ€์œผ๋กœ ๊ทธ๋ฃน ์ง€์„ ์ˆ˜ ์žˆ๊ณ , ๋กœ๋ด‡์ด ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ์„œ๋น„์Šค ๋‹จ์œ„๋กœ ์ถ”์ƒํ™”ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ณตํ•ฉ ์„œ๋น„์Šค๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋กœ๋ด‡์˜ ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น์„ ์œ„ํ•ด 'ํ”Œ๋žœ' ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๊ณ , ๋ณตํ•ฉ ์„œ๋น„์Šค ๋‚ด์—์„œ ์ด๋ฒคํŠธ๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ์„œ ๋™์ ์œผ๋กœ ๋ชจ๋“œ๊ฐ€ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋‚˜์•„๊ฐ€ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘๋ ฅ์ด ๋”์šฑ ๊ฒฌ๊ณ ํ•˜๊ณ , ์œ ์—ฐํ•˜๊ณ , ํ™•์žฅ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด, ๊ตฐ์ง‘ ๋กœ๋ด‡์„ ์šด์šฉํ•  ๋•Œ ๋กœ๋ด‡์ด ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋„์ค‘์— ๋ฌธ์ œ๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋กœ๋ด‡์„ ๋™์ ์œผ๋กœ ๋‹ค๋ฅธ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋™์ ์œผ๋กœ๋„ ํŒ€์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๊ณ , ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ•˜๋‚˜์˜ ์„œ๋น„์Šค๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ทธ๋ฃน ์„œ๋น„์Šค๋ฅผ ์ง€์›ํ•˜๊ณ , ์ผ๋Œ€ ๋‹ค ํ†ต์‹ ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์„ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์— ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ํ™•์žฅ๋œ ์ƒ์œ„ ์ˆ˜์ค€์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ๋น„์ „๋ฌธ๊ฐ€๋„ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํ˜‘๋ ฅ ์ž„๋ฌด๋ฅผ ์‰ฝ๊ฒŒ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์žฌ์‚ฌ์šฉ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ค‘์ ์œผ๋กœ ๋‘” ์—ฐ๊ตฌ๋“ค์ด ์ตœ๊ทผ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ์ด๋“ค ์—ฐ๊ตฌ๋Š” ๋ฆฌ๋ˆ…์Šค ์šด์˜์ฒด์ œ์™€ ๊ฐ™์ด ๋งŽ์€ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํ•„์š”๋กœ ํ•˜๋Š” ์šด์˜์ฒด์ œ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ํ”„๋กœ๊ทธ๋žจ์˜ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ์˜ˆ์ธก ๋“ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ž์› ์ œ์•ฝ์ด ์‹ฌํ•œ ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ์—๋Š” ์–ด๋ ต๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„๋ฒ ๋””๋“œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์„ค๊ณ„ํ•  ๋•Œ ์“ฐ์ด๋Š” ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์„ ์ด์šฉํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ •์  ๋ถ„์„๊ณผ ์„ฑ๋Šฅ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ์—๋Š” ์ œ์•ฝ์ด ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์™ธ๋ถ€์˜ ์ด๋ฒคํŠธ์— ์˜ํ•ด ์ˆ˜ํ–‰ ์ค‘๊ฐ„์— ํ–‰์œ„๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๋กœ๋ด‡์„ ์œ„ํ•ด ์œ ํ•œ ์ƒํƒœ ๋จธ์‹  ๋ชจ๋ธ๊ณผ ๋ฐ์ดํ„ฐ ํ”Œ๋กœ์šฐ ๋ชจ๋ธ์ด ๊ฒฐํ•ฉํ•˜์—ฌ ๋™์  ํ–‰์œ„๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ํ™•์žฅ๋œ ๋ชจ๋ธ์„ ์ ์šฉํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋”ฅ๋Ÿฌ๋‹๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋Ÿ‰์„ ๋งŽ์ด ํ•„์š”๋กœ ํ•˜๋Š” ์‘์šฉ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘์—… ์šด์šฉ์„ ์œ„ํ•ด ๋กœ๋ด‡ ์‚ฌ์ด์— ๊ณต์œ ๋˜๋Š” ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋จผ์ € ์ค‘์•™์—์„œ ๊ณต์œ  ์ •๋ณด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํƒœ์Šคํฌ๋ผ๋Š” ํŠน๋ณ„ํ•œ ํƒœ์Šคํฌ๋ฅผ ํ†ตํ•ด ๊ณต์œ  ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์ด ์ž์‹ ์˜ ์ •๋ณด๋ฅผ ๊ฐ€๊นŒ์šด ๋กœ๋ด‡๋“ค๊ณผ ๊ณต์œ ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ€ํ‹ฐ์บ์ŠคํŒ…์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํฌํŠธ๋ฅผ ์ถ”๊ฐ€ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ™•์žฅ๋œ ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์€ ์‹ค์ œ ๋กœ๋ด‡ ์ฝ”๋“œ๋กœ ์ž๋™ ์ƒ์„ฑ๋˜์–ด, ์†Œํ”„ํŠธ์›จ์–ด ์„ค๊ณ„ ์ƒ์‚ฐ์„ฑ ๋ฐ ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ์— ์ด์ ์„ ๊ฐ€์ง„๋‹ค. ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ๋ช…์„ธํ•œ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ์ •ํ˜•์ ์ธ ํƒœ์Šคํฌ ๋ชจ๋ธ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ฐ„ ๋‹จ๊ณ„์ธ ์ „๋žต ๋‹จ๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์—ฌ๋Ÿฌ ๋Œ€์˜ ์‹ค์ œ ๋กœ๋ด‡์„ ์ด์šฉํ•œ ํ˜‘์—…ํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.In the near future, it will be common that a variety of robots are cooperating to perform a mission in various fields. There are two software challenges when deploying collaborative robots: how to specify a cooperative mission and how to program each robot to accomplish its mission. In this paper, we propose a novel software development framework that separates mission specification and robot behavior programming, which is called service-oriented and model-based (SeMo) framework. Also, it can support distributed robot systems, swarm robots, and their hybrid. For mission specification, a novel scripting language is proposed with the expression capability. It involves team composition and service-oriented behavior specification of each team, allowing dynamic mode change of operation and multi-tasking. Robots are grouped into teams, and the behavior of each team is defined with a composite service. The internal behavior of a composite service is defined by a sequence of services that the robots will perform. The notion of plan is applied to express multi-tasking. And the robot may have various operating modes, so mode change is triggered by events generated in a composite service. Moreover, to improve the robustness, scalability, and flexibility of robot collaboration, the high-level mission scripting language is extended with new features such as team hierarchy, group service, one-to-many communication. We assume that any robot fails during the execution of scenarios, and the grouping of robots can be made at run-time dynamically. Therefore, the extended mission specification enables a casual user to specify various types of cooperative missions easily. For robot behavior programming, an extended dataflow model is used for task-level behavior specification that does not depend on the robot hardware platform. To specify the dynamic behavior of the robot, we apply an extended task model that supports a hybrid specification of dataflow and finite state machine models. Furthermore, we propose a novel extension to allow the explicit specification of loop structures. This extension helps the compute-intensive application, which contains a lot of loop structures, to specify explicitly and analyze at compile time. Two types of information sharing, global information sharing and local knowledge sharing, are supported for robot collaboration in the dataflow graph. For global information, we use the library task, which supports shared resource management and server-client interaction. On the other hand, to share information locally with near robots, we add another type of port for multicasting and use the knowledge sharing technique. The actual robot code per robot is automatically generated from the associated task graph, which minimizes the human efforts in low-level robot programming and improves the software design productivity significantly. By abstracting the tasks or algorithms as services and adding the strategy description layer in the design flow, the mission specification is refined into task-graph specification automatically. The viability of the proposed methodology is verified with preliminary experiments with three cooperative mission scenarios with heterogeneous robot platforms and robot simulator.Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Contribution 7 1.3 Dissertation Organization 9 Chapter 2. Background and Existing Research 11 2.1 Terminologies 11 2.2 Robot Software Development Frameworks 25 2.3 Parallel Embedded Software Development Framework 31 Chapter 3. Overview of the SeMo Framework 41 3.1 Motivational Examples 45 Chapter 4. Robot Behavior Programming 47 4.1 Related works 48 4.2 Model-based Task Graph Specification for Individual Robots 56 4.3 Model-based Task Graph Specification for Cooperating Robots 70 4.4 Automatic Code Generation 74 4.5 Experiments 78 Chapter 5. High-level Mission Specification 81 5.1 Service-oriented Mission Specification 82 5.2 Strategy Description 93 5.3 Automatic Task Graph Generation 96 5.4 Related works 99 5.5 Experiments 104 Chapter 6. Conclusion 114 6.1 Future Research 116 Bibliography 118 Appendices 133 ์š”์•ฝ 158Docto

    IVOA Recommendation: Simple Spectral Access Protocol Version 1.1

    Full text link
    The Simple Spectral Access (SSA) Protocol (SSAP) defines a uniform interface to remotely discover and access one dimensional spectra. SSA is a member of an integrated family of data access interfaces altogether comprising the Data Access Layer (DAL) of the IVOA. SSA is based on a more general data model capable of describing most tabular spectrophotometric data, including time series and spectral energy distributions (SEDs) as well as 1-D spectra; however the scope of the SSA interface as specified in this document is limited to simple 1-D spectra, including simple aggregations of 1-D spectra. The form of the SSA interface is simple: clients first query the global resource registry to find services of interest and then issue a data discovery query to selected services to determine what relevant data is available from each service; the candidate datasets available are described uniformly in a VOTable format document which is returned in response to the query. Finally, the client may retrieve selected datasets for analysis. Spectrum datasets returned by an SSA spectrum service may be either precomputed, archival datasets, or they may be virtual data which is computed on the fly to respond to a client request. Spectrum datasets may conform to a standard data model defined by SSA, or may be native spectra with custom project-defined content. Spectra may be returned in any of a number of standard data formats. Spectral data is generally stored externally to the VO in a format specific to each spectral data collection; currently there is no standard way to represent astronomical spectra, and virtually every project does it differently. Hence spectra may be actively mediated to the standard SSA-defined data model at access time by the service, so that client analysis programs do not have to be familiar with the idiosyncratic details of each data collection to be accessed

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated
    • โ€ฆ
    corecore