12,027 research outputs found

    Service discovery and negotiation with COWS

    Get PDF
    To provide formal foundations to current (web) services technologies, we put forward using COWS, a process calculus for specifying, combining and analysing services, as a uniform formalism for modelling all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, deployment and execution. In this paper, we show that constraints and operations on them can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a service-based web hosting provider

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Vertical Coordination in the Cow/Calf-Feedlot Segment of the Beef Subsector

    Get PDF

    For Our Information, December 1956, Vol. IX, no. 5

    Get PDF
    An official publication of the ILR School, Cornell University, “for the information of all faculty, staff and students.

    A Type-Safe Model of Adaptive Object Groups

    Full text link
    Services are autonomous, self-describing, technology-neutral software units that can be described, published, discovered, and composed into software applications at runtime. Designing software services and composing services in order to form applications or composite services requires abstractions beyond those found in typical object-oriented programming languages. This paper explores service-oriented abstractions such as service adaptation, discovery, and querying in an object-oriented setting. We develop a formal model of adaptive object-oriented groups which offer services to their environment. These groups fit directly into the object-oriented paradigm in the sense that they can be dynamically created, they have an identity, and they can receive method calls. In contrast to objects, groups are not used for structuring code. A group exports its services through interfaces and relies on objects to implement these services. Objects may join or leave different groups. Groups may dynamically export new interfaces, they support service discovery, and they can be queried at runtime for the interfaces they support. We define an operational semantics and a static type system for this model of adaptive object groups, and show that well-typed programs do not cause method-not-understood errors at runtime.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    GEA Farm Technologies: Building Core Competencies through Internal and External Growth

    Get PDF
    GEA Farm Technologies is a mid-sized world market leader of mechanical equipment and service solutions for milk production and livestock farming. The so-called hidden champion developed a set of capabilities and core competencies to innovate the industry’s established business model through a two-fold strategy balancing internal and external growth. The case study invites students to explore the benefits and limits of this business model innovation and requires them to investigate further strategic options for growth

    2004 ANNUAL AGRICULTURAL OUTLOOK

    Get PDF
    Farm Management,
    corecore