18,116 research outputs found

    Ibeacon based proximity and indoor localization system

    Get PDF
    User location can be leveraged to provide a wide range of services in a variety of indoor locations including retails stores, hospitals, airports, museums and libraries etc. The widescale proliferation of user devices such as smart phones and the interconnectivity among different entities, powered by Internet of Things (IoT), makes user device-based localization a viable approach to provide Location Based Services (LBS). Location based services can be broadly classified into 1) Proximity based services that provides services based on a rough estimate of users distance to any entity, and 2) Indoor localization that locates a user\u27s exact location in the indoor environment rather than a rough estimate of the distance. The primary requirements of these services are higher energy efficiency, localization accuracy, wide reception range, low cost and availability. Technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to provide both indoor localization and proximity based services. Since these technologies are not primarily intended for LBS, they do not fulfill the aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that use Apple\u27s proprietary iBeacon protocol are mainly intended to provide proximity based services. iBeacons satisfy the energy efficiency, wide reception range and availability requirements of LBS. However, iBeacons are prone to noise due to their reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates in indoor environments due to interference from different obstructions. This limits its proximity detection accuracy. In this thesis, we present an iBeacon based proximity and indoor localization system. We present our two server-based algorithms to improve the proximity detection accuracy by reducing the variation in the RSSI and using the RSSI-estimated distance, rather than the RSSI itself, for proximity classification. Our algorithms Server-side Running Average and Server-side Kalman Filter improves the proximity detection accuracy by 29% and 32% respectively in contrast to Apple\u27s current approach of using moving average of RSSI values for proximity classification. We utilize a server-based approach because of the greater computing power of servers. Furthermore, server-based approach helps reduce the energy consumption of user device. We describe our cloud based architecture for iBeacon based proximity detection. We also use iBeacons for indoor localization. iBeacons are not primarily intended for indoor localization as their reliance on RSSI makes them unsuitable for accurate indoor localization. To improve the localization accuracy, we use Bayesian filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended Kalman Filter with Particle Filter, the indoor localization accuracy can be improved by 28% and 33.94% respectively when compared with only using PF. The PF, KFPF and PFEKF algorithm on the server side have average localization error of 1.441 meters, 1.0351 meters and 0.9519 meters respectively

    Occupancy Detection using Wireless Sensor Network in Indoor Environment

    Get PDF
    Occupancy detection plays an important role in many smart buildings such as reducing building energy usage by controlling heating, ventilation and air conditioning (HVAC) systems, monitoring systems and managing lighting systems, tracking people in hospitals for medical issues, advertising to people in malls, and to search and rescue missions. The global positioning system (GPS) is used most widely as a localization system but highly inaccurate for indoor applications. The indoor environment is difficult to handle because along with the loss of signals, privacy is a major concern. Indoor tracking has many aspects in common with sensor localization in Wireless Sensor Networks (WSN). The contribution of this work is the demonstration of a nonintrusive approach to detect an occupancy in a building using wireless sensor networks to detect energy from cell phones in a secure facility and perform indoor localization based on the minimum mean square error (MMSE). To estimate the occupancy, the detected cellular signals information such as signal amplitude, frequency, power and detection time is sent to a fusion server, matched the detected signals by time and channel information, performed localization to estimate a location, and finally estimated the occupancy of rooms in a building from the estimated locations

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    Location Detection Using Wifi

    Get PDF
    There are many approaches for indoor location detection such as using infrared and ultra sound. Beside that, another powerful approach for indoor location detection is RF (Radio Frequency). In emergency situation happened in a building such as fires, it is difficult to make sure all people in the building have left out. It is even worst if there are victim trapped but no body know where the exactly location of the victims. The project is construct a network environment based on wireless LAN infrastructure and supports the protocol over the 802.1 lg. The system is organized by client-server, access points and PDAs or laptops as client devices. Location determination method is implemented on the basis of signal strength. The test program developed using the sample provided able to detect the access points available. The parameter that can be get using the program including the SSID, MAC address, Network type, WEP, RSSI and etc. To identify the distance testing has been made based on the RSSI gathered. The testing is made by calculating manually the distance of the location based on the RSSI collected. The proposed system is an indoor positioning system based on signal strength measurements, which were approximated by the received RSSI in a mobile device. The triangulation method combined with distance estimation is used to predict the position of the terminal. It is hoped that with some improvement to the proposed system able to work in the emergency conditio

    Group-In: Group Inference from Wireless Traces of Mobile Devices

    Full text link
    This paper proposes Group-In, a wireless scanning system to detect static or mobile people groups in indoor or outdoor environments. Group-In collects only wireless traces from the Bluetooth-enabled mobile devices for group inference. The key problem addressed in this work is to detect not only static groups but also moving groups with a multi-phased approach based only noisy wireless Received Signal Strength Indicator (RSSIs) observed by multiple wireless scanners without localization support. We propose new centralized and decentralized schemes to process the sparse and noisy wireless data, and leverage graph-based clustering techniques for group detection from short-term and long-term aspects. Group-In provides two outcomes: 1) group detection in short time intervals such as two minutes and 2) long-term linkages such as a month. To verify the performance, we conduct two experimental studies. One consists of 27 controlled scenarios in the lab environments. The other is a real-world scenario where we place Bluetooth scanners in an office environment, and employees carry beacons for more than one month. Both the controlled and real-world experiments result in high accuracy group detection in short time intervals and sampling liberties in terms of the Jaccard index and pairwise similarity coefficient.Comment: This work has been funded by the EU Horizon 2020 Programme under Grant Agreements No. 731993 AUTOPILOT and No.871249 LOCUS projects. The content of this paper does not reflect the official opinion of the EU. Responsibility for the information and views expressed therein lies entirely with the authors. Proc. of ACM/IEEE IPSN'20, 202
    • …
    corecore