2,918 research outputs found

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Serious Games for Stroke Telerehabilitation of Upper Limb - A Review for Future Research

    Get PDF
    Maintaining appropriate home rehabilitation programs after stroke, with proper adherence and remote monitoring is a challenging task.  Virtual reality (VR) - based serious games could be a strategy used in telerehabilitation (TR) to engage patients in an enjoyable and therapeutic approach. The aim of this review was to analyze the background and quality of clinical research on this matter to guide future research. The review was based on research material obtained from PubMed and Cochrane up to April 2020 using the PRISMA approach.  The use of VR serious games has shown evidence of efficacy on upper limb TR after stroke, but the evidence strength is still low due to a limited number of randomized controlled trials (RCT), a small number of participants involved, and heterogeneous samples. Although this is a promising strategy to complement conventional rehabilitation, further investigation is needed to strengthen the evidence of effectiveness and support the dissemination of the developed solutions

    The use and effect of video game design theory in the creation of game-based systems for upper limb stroke rehabilitation

    Get PDF
    Upper limb exercise is often neglected during post-stroke rehabilitation. Video games have been shown to be useful in providing environments in which patients can practise repetitive, functionally meaningful movements, and in inducing neuroplasticity. The design of video games is often focused upon a number of fundamental principles, such as reward, goals, challenge and the concept of meaningful play, and these same principles are important in the design of games for rehabilitation. Further to this, there have been several attempts for the strengthening of the relationship between commercial game design and rehabilitative game design, the former providing insight into factors that can increase motivation and engagement with the latter. In this article, we present an overview of various game design principles and the theoretical grounding behind their presence, in addition to attempts made to utilise these principles in the creation of upper limb stroke rehabilitation systems and the outcomes of their use. We also present research aiming to move the collaborative efforts of designers and therapists towards a model for the structured design of these games and the various steps taken concerning the theoretical classification and mapping of game design concepts with intended cognitive and motor outcomes

    Future Trends of Virtual, Augmented Reality, and Games for Health

    Get PDF
    Serious game is now a multi-billion dollar industry and is still growing steadily in many sectors. As a major subset of serious games, designing and developing Virtual Reality (VR), Augmented Reality (AR), and serious games or adopting off-the-shelf games to support medical education, rehabilitation, or promote health has become a promising frontier in the healthcare sector since 2004, because games technology is inexpensive, widely available, fun and entertaining for people of all ages, with various health conditions and different sensory, motor, and cognitive capabilities. In this chapter, we provide the reader an overview of the book with a perspective of future trends of VR, AR simulation and serious games for healthcare

    Design Parameters in Multimodal Games for Rehabilitation

    Get PDF
    Published under the Liebert "Open Option"Objectives: The repetitive and sometimes mundane nature of conventional rehabilitation therapy provides an ideal opportunity for development of interactive and challenging therapeutic games that have the potential to engage and motivate the players. Certain game design parameters that may encourage patients to actively participate by making the games more enjoyable have been identified. In this article, we describe a formative study in which we designed and evaluated some of these parameters with healthy subjects. Materials and Methods: The ‘‘operant conditioning’’ and ‘‘scoring’’ design parameters were incorporated in a remake of a classic labyrinth game, ‘‘Marble Maze.’’ A group of participants (n = 37) played the game twice: Once in the control condition without both modalities and then with either one of the parameters or with both. Measures of game duration and number of fails in the game were recorded along with survey questionnaires to measure player perceptions of intrinsic motivation on the game. Results: Longer playtimes, higher levels of interest/enjoyment, and effort to play the game were recorded with the introduction of these parameters. Conclusions: This study provides an understanding on how game design parameters can be used to motivate and encourage people to play longer. With these positive results, future aims are to test the parameters with stroke patients, providing much clearer insight as to what influences these parameters have on patients un- dergoing therapy. The ultimate goal is to utilize game design in order to maintain longer therapeutic interaction between a patient and his or her therapy medium.Peer reviewedFinal Published versio

    Improving engagement of stroke survivors using desktop virtual Reality-Based serious games for upper limb rehabilitation: A multiple case study

    Get PDF
    Engagement with upper limb rehabilitation post-stroke can improve rehabilitation outcomes. Virtual Reality can be used to make rehabilitation more engaging. In this paper, we propose a multiple case study to determine: (1) whether game design principles (identified in an earlier study as being likely to engage) actually do engage, in practice, a sample of stroke survivors with a Desktop Virtual Reality-based Serious Game designed for upper limb rehabilitation; and (2) what game design factors support the existence of these principles in the game. In this study, we considered 15 principles: awareness , feedback , interactivity , flow , challenge , attention , interest , involvement , psychological absorption , motivation , effort , clear instructions , usability , purpose , and a first-person view . Four stroke survivors used, for a period of 12 weeks, a Virtual Reality-based upper limb rehabilitation system called the Neuromender Rehabilitation System. The stroke survivors were then asked how well each of the 15 principles was supported by the Neuromender Rehabilitation System and how much they felt each principle supported their engagement with the system. All the 15 tested principles had good or reasonable support from the participants as being engaging. Use of feedback was emphasised as an important design factor for supporting the design principles, but there was otherwise little agreement in important design factors among the participants. This indicates that more personalised experiences may be necessary for optimised engagement. The insight gained can be used to inform the design of a larger scale statistical study into what engages stroke survivors with Desktop Virtual Reality-based upper limb rehabilitation

    Master of Science

    Get PDF
    thesisStroke is a leading cause of death and adult disability in the United States. Survivors lose abilities that were controlled by the affected area of the brain. Rehabilitation therapy is administered to help survivors regain control of lost functional abilities. The number of sessions that stroke survivors attend are limited to the availability of a clinic close to their residence and the amount of time friends and family can devote to help them commute, as most are incapable of driving. Home-based therapy using virtual reality and computer games have the potential of solving these issues, increasing the amount of independent therapy performed by patients. This thesis presents the design, development and testing of a low-cost system, potentially suitable for use in the home environment. This system is designed for rehabilitation of the impaired upper limb of stroke survivors. A Microsoft Kinect was used to track the position of the patient's hand and the game requires the user to move the arm over increasing large areas by sliding the arm on a support. Studies were performed with six stroke survivors and five control subjects to determine the feasibility of the system. Patients played the game for 6 to 10 days and their game scores, range of motion and Fugl-Meyer scores were recorded for analysis. Statistically significant (p<0.05) differences were found between the game scores of the first and last day of the study. Furthermore, acceptability surveys revealed patients enjoyed playing the game, found this kind of therapy more enjoyable than conventional therapy and were willing to use the system in the home environment. Future work in the system will be focused on larger studies, improving the comfort of patients while playing the game, and developing new games that address cognitive issues and integrate art and therapy

    Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario

    Get PDF
    Virtual Reality (VR) environments can be applied to assistive robotics to improve the effectiveness and the user experience perception in the rehabilitation process due to its innovative nature, getting to entertain patients while they recover their motor functions. This literature review pretends to analyze some design principles of VR environments developed for upper limb rehabilitation processes. The idea is to identify features related to peripheral and central nervous systems, types of information included as feedback to increase the user's levels of immersion having a positive impact on the user's performance and experience during the treatment. A total of 32 articles published in Scopus, IEEE, PubMed, and Web of Science in the last four years were reviewed. We present the article selection process, the division by concepts presented previously, and the guidelines that can be considered for the design of VR environments applicable to assistive robots for upper limbs rehabilitation processes.Los entornos de Realidad Virtual (RV) aplicables a sistemas de robótica asistencial pueden ser diseñados de manera que mejoren la efectividad y la experiencia de usuario de los procesos de rehabilitación debido a su naturaleza novedosa, logrando entretener a los pacientes mientras recuperan sus funciones motoras. Esta revisión literaria pretende analizar los criterios de diseño de entornos de RV utilizados en procesos de rehabilitación de miembro superior, identificando las características de entornos para rehabilitación de problemas asociados el sistema nervioso central y periféricos, los tipos de información que se realimenta al usuario para beneficiar los niveles de inmersión y su impacto en términos del desempeño y la experiencia del usuario en tratamiento. Un total de 32 artículos publicados en revistas indexadas de Scopus, IEEE, PubMed y Web of Science en los últimos cuatro años fueron revisados. Se presenta el proceso de selección de artículos, la división por las temáticas presentadas anteriormente y los lineamientos generales que pueden ser considerados para el diseño de entornos de RV aplicables a robots asistenciales en procesos de rehabilitación de miembro superior

    Remote sensing technologies for physiotherapy assessment

    Get PDF
    The paper presents a set of remote, unobtrusive sensing technologies that can be used in upper and lower limbs rehabilitation monitoring. The advantages of using sensors based on microwave Doppler radar or infrared technologies for physiotherapy assessment are discussed. These technologies allow motion sensing at distance from monitored subject, reducing thus the discomfort produced by some wearable technologies for limbs movement assessment. The microwave radar that may be easily hidden into environment by nonmetallic parts allows remote sensing of human motion, providing information on user movements characteristics and patterns. The infrared technologies - infrared LEDs from Leap-Motion, infrared laser from Kinect depth sensor, and infrared thermography can be used for different movements' parameters evaluation. Visible for users, Leap-motion and Kinect sensors assure higher accuracy on body parts movements' detection at low computation load. These technologies are commonly used for virtual reality (VR) and augmented reality (AR) scenarios, in which the user motion patterns and the muscular activity might be analyzed. Thermography can be employed to evaluate the muscular loading. Muscular activity during movements training in physiotherapy can be estimated through skin temperature measurement before and after physical training. Issues related to the considered remote sensing technologies such as VR serious game for motor rehabilitation, signal processing and experimental results associated with microwave radar, infrared sensors and thermography for physiotherapy sensing are included in the paper.info:eu-repo/semantics/acceptedVersio
    corecore