1,991 research outputs found

    Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with ohmic dissipation

    Get PDF
    To provide a deeper insight of the transport phenomena inherent to the manufacturing of magnetic nano-polymer materials, in the present work a mathematical model is developed for time-dependent hydromagnetic rheological nanopolymer boundary layer flow and heat transfer over a stretching sheet in the presence of a transverse static magnetic field. Joule heating (Ohmic dissipation) and viscous heating effects are included since these phenomena arise frequently in magnetic materials processing. Stokes’ couple stress model is deployed to simulate non-Newtonian micro-structural characteristics. The Tiwari-Das nanoscale model is adopted which permits different nano-particles to be simulated (in this article both copper-water and aluminium oxide-water nanofluids are considered). Similarity transformations are utilized to convert the governing partial differential conservation equations into a system of coupled, nonlinear ordinary differential equations with appropriate wall and free stream boundary conditions. The shooting technique is used to solve the reduced nonlinear coupled ordinary differential boundary value problem via MATLAB symbolic software. Validation with published results from the literature is included for the special cases of non-dissipative and Newtonian nanofluid flows. Fluid velocity and temperature profiles for both Copper and Aluminium Oxide (Al2O3) nanofluids are observed to be enhanced with greater non-Newtonian couple stress parameter and magnetic parameter whereas the opposite trend is computed with greater values of unsteadiness parameter. The boundary layer flow is accelerated with increasing buoyancy parameter, elastic sheet stretching parameter and convection parameter. Temperatures are generally increased with greater couple stress rheological parameter and are consistently higher for the Aluminium oxide nanoparticle case. Temperatures are also boosted with magnetic parameter and exhibit an overshoot near the wall when magnetic parameter exceeds unity (magnetic force exceeds viscous force). A decrease in temperatures is induced with increasing sheet stretching parameter. Increasing Eckert number elevates temperatures considerably. With greater nanoparticle volume fraction both skin friction and Nusselt number are elevated and copper nano-particles achieve higher magnitudes than aluminium oxide

    Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions

    Get PDF
    The influence of surface roughness on the slip behaviour of a Newtonian liquid in steady planar shear is investigated using three different approaches, namely Stokes flow calculations, molecular dynamics (MD) simulations and a statistical mechanical model for the friction coefficient between a corrugated wall and the first liquid layer. These approaches are used to probe the behaviour of the slip length as a function of the slope parameter ka = 2πa/λ, where a and λ represent the amplitude and wavelength characterizing the periodic corrugation of the bounding surface. The molecular and continuum approaches both confirm a monotonic decay in the slip length with increasing ka but the rate of decay as well as the magnitude of the slip length obtained from the Stokes flow solutions exceed the MD predictions as the wall feature sizes approach the liquid molecular dimensions. In the limit of molecular-scale wall corrugation, a Green–Kubo analysis based on the fluctuation–dissipation theorem accurately reproduces the MD results for the behaviour of the slip length as a function of a. In combination, these three approaches provide a detailed picture of the influence of periodic roughness on the slip length which spans multiple length scales ranging from molecular to macroscopic dimensions

    Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet

    Get PDF
    This paper numerically investigates radiative magnetohydrodynamic mixed convection boundary layer flow of nanofluids over a nonlinear inclined stretching/shrinking sheet in the presence of heat source/sink and viscous dissipation. The Rosseland approximation is adopted for thermal radiation effects and the Maxwell-Garnetts and Brinkman models are used for the effective thermal conductivity and dynamic viscosity of the nanofluids respectively. The governing coupled nonlinear momentum and thermal boundary layer equations are rendered into a system of ordinary differential equations via local similarity transformations with appropriate boundary conditions. The non-dimensional, nonlinear, well-posed boundary value problem is then solved with the Keller box implicit finite difference scheme. The emerging thermo-physical dimensionless parameters governing the flow are the magnetic field parameter, volume fraction parameter, power-law stretching parameter, Richardson number, suction/injection parameter, Eckert number and heat source/sink parameter. A detailed study of the influence of these parameters on velocity and temperature distributions is conducted. Additionally the evolution of skin friction coefficient and Nusselt number values with selected parameters is presented. Verification of numerical solutions is achieved via benchmarking with some limiting cases documented in previously reported results, and generally very good correlation is demonstrated. This investigation is relevant to fabrication of magnetic nanomaterials and high temperature treatment of magnetic nano-polymers

    Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions

    Get PDF
    Energy conversion under conduction, convection, diffusion and radiation has been studied for MHD free convection heat transfer of a steady laminar boundary-layer flow past a moving permeable non-linearly extrusion stretching sheet. The nonlinear Rosseland thermal radiation flux model, velocity slip, thermal and mass convective boundary conditions are considered to obtain a model with fundamental applications to real world energy systems. The Navier slip, thermal and mass convective boundary conditions are taken into account. Similarity differential equations with corresponding boundary conditions for the flow problem, are derived, using a scaling group of transformation. The transformed model is shown to be controlled by magnetic field, conduction-convection, convection-diffusion, suction/injection, radiation-conduction, temperature ratio, Prandtl number, Lewis number, buoyancy ratio and velocity slip parameters. The transformed non-dimensional boundary value problem comprises a system of nonlinear ordinary differential equations and physically realistic boundary conditions, and is solved numerically using the efficient Runge-Kutta-Fehlberg fourth fifth order numerical method, available in Maple17 symbolic software. Validation of results is achieved with previous simulations available in the published literature. The obtained results are displayed both in graphical and tabular form to exhibit the effect of the controlling parameters on the dimensionless velocity, temperature and concentration distributions. The current study has applications in high temperature materials processing utilizing magnetohydrodynamics, improved performance of MHD energy generator wall flows and also magnetic-microscale fluid devices

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    Numerical investigation of Von Karman swirling bioconvective nanofluid transport from a rotating disk in a porous medium with Stefan blowing and anisotropic slip effects

    Get PDF
    In recent years, significant progress has been made in modern micro- and nanotechnologies related to applications in micro/nano-electronic devices. These technologies are increasingly utilizing sophisticated fluent media to enhance performance. Among the new trends is the simultaneous adoption of nanofluids and biological micro-organisms. Motivated by bio-nanofluid rotating disk oxygenators in medical engineering, in the current work, a mathematical model is developed for steady convective Von Karman swirling flow from an impermeable power-law radially stretched disk rotating in a Darcy porous medium saturated with nanofluid doped with gyrotactic micro-organisms. Anisotropic slip at the wall and blowing effects due to concentration are incorporated. The nano-bio transport model is formulated using non-linear partial differential equations (NPDEs), which are transformed to a set of similarity ordinary differential equations (SODEs) by appropriate transformations. The transformed boundary value problem is solved by a Chebyshev collocation method. The impact of key parameters on dimensionless velocity components, concentration, temperature and motile microorganism density distributions are computed and visualized graphically. Validation with previous studies is included. It is found that that the effects of suction provide a better enhancement of the heat, mass and microorganisms transfer in comparison to blowing. Moreover, physical quantities decrease with higher slip parameters irrespective of the existence of blowing. Temperature is suppressed with increasing thermal slip whereas nanoparticle concentration is suppressed with increasing wall mass slip. Micro-organism density number increases with the greater microorganism slip. Radial skin friction is boosted with positive values of the power law stretching parameter whereas it is decreased with negative values. The converse response is computed for circumferential skin friction, nanoparticle mass transfer rate and motile micro-organism density number gradient. Results from this study are relevant to novel bioreactors, membrane oxygenators, food processing and bio-chromatography

    Numerical Solution of 3rd order ODE Using FDM: On a Moving Surface in MHD Flow of Sisko Fluid

    Get PDF
    A Similarity group theoretical technique is used to transform the governing nonlinear partial differential equations of two dimensional MHD boundary layer flow of Sisko fluid into nonlinear ordinary differential equations. Then the resulting third order nonlinear ordinary differential equation with corresponding boundary conditions is linearised by Quasi linearization method. Numerical solution of the linearised third order ODE is obtained using Finite Difference method (FDM). Graphical presentation of the solution is given
    • …
    corecore