707 research outputs found

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver

    MGF Approach to the Analysis of Generalized Two-Ray Fading Models

    Full text link
    We analyze a class of Generalized Two-Ray (GTR) fading channels that consist of two line of sight (LOS) components with random phase plus a diffuse component. We derive a closed form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly simplifies its analysis. This expression arises from the observation that the GTR fading model can be expressed in terms of a conditional underlying Rician distribution. We illustrate the approach to derive simple expressions for statistics and performance metrics of interest such as the amount of fading, the level crossing rate, the symbol error rate, and the ergodic capacity in GTR fading channels. We also show that the effect of considering a more general distribution for the phase difference between the LOS components has an impact on the average SNR.Comment: 14 pages, 8 Figures and 2 Tables. This work has been accepted for publication at IEEE Transactions on Wireless Communications. Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]

    Esquemas distribuídos para seleção de múltiplas antenas em redes com retransmissores do tipo amplifica-e-encaminha

    Get PDF
    Orientador: José Cândido Silveira Santos FilhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A seleção de antena na transmissão tem sido apresentada como uma estratégia promissora para explorar os benefícios do uso de múltiplas antenas em sistemas de comunicações com retransmissores. No entanto, essa abordagem pode exigir um montante considerável de estimações de canal, transmissões de realimentação e atraso, dado que a sua implementação ótima e centralizada requer o monitoramento do estado do canal de todos os enlaces. Para aliviar essas deficiências, este trabalho propõe e analisa um conjunto de esquemas subótimos de seleção de antena na transmissão para sistemas com retransmissores do tipo amplifica-e-encaminha, os quais podem ser implementados de uma forma distribuída. Nos esquemas propostos, a antena é selecionada com base na informação local do estado de canal que está disponível na fonte, requerendo, portanto, um atraso e uma carga de realimentação pequenos e constantes. Tal abordagem é considerada em uso conjunto com diferentes técnicas, incluindo métodos de combinação de diversidade (combinação por máxima razão e combinação por seleção) no destino, protocolos de ganho fixo ou variável no relay, e transceptores com múltiplas antenas no relay. Além disso, para o caso particular em que o retransmissor tem ganho fixo e uma única antena, considera-se também o uso de um mecanismo de seleção de enlace na fonte. Para cada caso, o desempenho do sistema é avaliado em termos de probabilidade de outage, eficiência espectral e/ou vazão. O foco principal é direcionado à probabilidade de outage, para a qual são deduzidas expressões exatas e limitantes de desempenho. Uma análise assintótica é também efetuada para enriquecer a compreensão do comportamento do sistema quando operando sob alta relação sinal-ruído. Finalmente, como contribuição isolada, uma estratégia subótima e simples de alocação de potência é elaborada para um sistema com múltiplos retransmissores do tipo decodifica-e-encaminha, considerando-se enlaces com erros e codificação de fonte distribuídaAbstract: Transmit-antenna selection has been presented as a promising strategy for exploiting the benefits of multiple antennas in relaying communication systems. However, this approach may demand a considerable amount of channel estimations, feedback transmissions, and delay, since its optimal centralized implementation requires monitoring the channel state of all links. To alleviate those impairments, this work proposes and analyzes a set of suboptimal transmit-antenna selection schemes for amplify-and-forward relaying systems, which can be implemented in a distributed manner. In the proposed schemes, the antenna is selected based on the local channel-state information that is available at the source, thus requiring a low and constant delay/feedback overhead. Such an approach is considered along with different techniques, including diversity combining methods (maximal-ratio combining and selection combining) at the destination, fixed- and variable-gain protocols at the relay, and multi-antenna transceivers at the relay. A link-selection mechanism at the source is also considered for the special case of a single-antenna fixed-gain relay. For each case, the system performance is assessed in terms of outage probability, spectral efficiency, and/or throughput. The main focus is placed on the outage probability, for which exact or bound expressions are derived. An asymptotic analysis is also performed to provide further insights into the system behavior at high signal-to-noise ratio. Finally, as an isolated contribution, a simple suboptimal power allocation strategy is designed for a decode-and-forward multi-relay system with lossy intra-links and distributed source codingDoutoradoTelecomunicações e TelemáticaDoutora em Engenharia ElétricaCAPE

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays
    corecore