8 research outputs found

    Polar Coding Schemes for Cooperative Transmission Systems

    Get PDF
    : In this thesis, a serially-concatenated coding scheme with a polar code as the outer code and a low density generator matrix (LDGM) code as the inner code is firstly proposed. It is shown that that the proposed scheme provides a method to improve significantly the low convergence of polar codes and the high error floor of LDGM codes while keeping the advantages of both such as the low encoding and decoding complexity. The bit error rate results show that the proposed scheme by reasonable design have the potential to approach a performance close to the capacity limit and avoid error floor effectively. Secondly, a novel transmission protocol based on polar coding is proposed for the degraded half-duplex relay channel. In the proposed protocol, the relay only needs to forward a part of the decoded source message that the destination needs according to the exquisite nested structure of polar codes. It is proved that the scheme can achieve the capacity of the half-duplex relay channel while enjoying low encoding/decoding complexity. By modeling the practical system, we verify that the proposed scheme outperforms the conventional scheme designed by low-density parity-check codes by simulations. Finally, a generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components (MRN-ORCs). In such a protocol, each relay node decodes the received source message with the help of partial information from previous nodes and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. For the design of polar codes, the nested structures are constructed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. It is proved that the proposed scheme achieves the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes

    Low Density Graph Codes And Novel Optimization Strategies For Information Transfer Over Impaired Medium

    Get PDF
    Effective methods for information transfer over an imperfect medium are of great interest. This thesis addresses the following four topics involving low density graph codes and novel optimization strategies.Firstly, we study the performance of a promising coding technique: low density generator matrix (LDGM) codes. LDGM codes provide satisfying performance while maintaining low encoding and decoding complexities. In the thesis, the performance of LDGM codes is extracted for both majority-rule-based and sum-product iterative decoding algorithms. The ultimate performance of the coding scheme is revealed through distance spectrum analysis. We derive the distance spectral for both LDGM codes and concatenated LDGM codes. The results show that serial-concatenated LDGM codes deliver extremely low error-floors. This work provides valued information for selecting the parameters of LDGM codes. Secondly, we investigate network-coding on relay-assisted wireless multiple access (WMA) networks. Network-coding is an effective way to increase robustness and traffic capacity of networks. Following the framework of network-coding, we introduce new network codes for the WMA networks. The codes are constructed based on sparse graphs, and can explore the diversities available from both the time and space domains. The data integrity from relays could be compromised when the relays are deployed in open areas. For this, we propose a simple but robust security mechanism to verify the data integrity.Thirdly, we study the problem of bandwidth allocation for the transmission of multiple sources of data over a single communication medium. We aim to maximize the overall user satisfaction, and formulate an optimization problem. Using either the logarithmic or exponential form of satisfaction function, we derive closed-form optimal solutions, and show that the optimal bandwidth allocation for each type of data is piecewise linear with respect to the total available bandwidth. Fourthly, we consider the optimization strategy on recovery of target spectrum for filter-array-based spectrometers. We model the spectrophotometric system as a communication system, in which the information content of the target spectrum is passed through distortive filters. By exploiting non-negative nature of spectral content, a non-negative least-square optimal criterion is found particularly effective. The concept is verified in a hardware implemen

    逐次干渉除去を用いた多元接続システムのパワー割り当てに関する研究

    Get PDF
    In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting.電気通信大学201

    Signal design for Multiple-Antenna Systems and Wireless Networks

    Get PDF
    This dissertation is concerned with the signal design problems for Multiple Input and Multiple Output (MIMO) antenna systems and wireless networks. Three related but distinct problems are considered.The first problem considered is the design of space time codes for MIMO systems in the case when neither the transmitter nor the receiver knows the channel. We present the theoretical concept of communicating over block fading channel using Layered Unitary Space Time Codes (LUSTC), where the input signal is formed as a product of a series of unitary matrices with corresponding dimensionality. We show the channel capacity using isotropically distributed (i.d.) input signaling and optimal decoding can be achieved by layered i.d. signaling scheme along with a low complexity successive decoding. The closed form layered channel capacity is obtained, which serves as a design guideline for practical LUSTC. In the design of LUSTC, a successive design method is applied to leverage the problem of optimizing over lots of parameters.The feedback of channel state information (CSI) to the transmitter in MIMO systems is known to increase the forward channel capacity. A suboptimal power allocation scheme for MIMO systems is then proposed for limited rate feedback of CSI. We find that the capacity loss of this simple scheme is rather small compared to the optimal water-filling solution. This knowledge is applied for the design of the feedback codebook. In the codebook design, a generalized Lloyd algorithm is employed, in which the computation of the centroid is formulated as an optimization problem and solved optimally. Numerical results show that the proposed codebook design outperforms the existing algorithms in the literature.While it is not feasible to deploy multiple antennas in a wireless node due to the space limitation, user cooperation is an alternative to increase performance of the wireless networks. To this end, a coded user cooperation scheme is considered in the dissertation, which is shown to be equivalent to a coding scheme with the encoding done in a distributive manner. Utilizing the coding theoretic bound and simulation results, we show that the coded user cooperation scheme has great advantage over the non-cooperative scheme

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore