472 research outputs found

    Auditable and performant Byzantine consensus for permissioned ledgers

    Get PDF
    Permissioned ledgers allow users to execute transactions against a data store, and retain proof of their execution in a replicated ledger. Each replica verifies the transactions’ execution and ensures that, in perpetuity, a committed transaction cannot be removed from the ledger. Unfortunately, this is not guaranteed by today’s permissioned ledgers, which can be re-written if an arbitrary number of replicas collude. In addition, the transaction throughput of permissioned ledgers is low, hampering real-world deployments, by not taking advantage of multi-core CPUs and hardware accelerators. This thesis explores how permissioned ledgers and their consensus protocols can be made auditable in perpetuity; even when all replicas collude and re-write the ledger. It also addresses how Byzantine consensus protocols can be changed to increase the execution throughput of complex transactions. This thesis makes the following contributions: 1. Always auditable Byzantine consensus protocols. We present a permissioned ledger system that can assign blame to individual replicas regardless of how many of them misbehave. This is achieved by signing and storing consensus protocol messages in the ledger and providing clients with signed, universally-verifiable receipts. 2. Performant transaction execution with hardware accelerators. Next, we describe a cloud-based ML inference service that provides strong integrity guarantees, while staying compatible with current inference APIs. We change the Byzantine consensus protocol to execute machine learning (ML) inference computation on GPUs to optimize throughput and latency of ML inference computation. 3. Parallel transactions execution on multi-core CPUs. Finally, we introduce a permissioned ledger that executes transactions, in parallel, on multi-core CPUs. We separate the execution of transactions between the primary and secondary replicas. The primary replica executes transactions on multiple CPU cores and creates a dependency graph of the transactions that the backup replicas utilize to execute transactions in parallel.Open Acces

    GEO-REPLICATION IN A REVIEW OF LATENCY AND COST-EFFECTIVENESS

    Get PDF
    Replication is a data distribution technique for synchronization between databases so that data remains consistent. Replication can overcome data loss problems and perform system recovery quickly if a problem occurs on one of the servers. One of the problems is when a natural disaster occurs at the server location. As a result, if you do not have data replication in different locations, it will cause the system to not run and possibly lose data. Then, geo-replication can reduce latency because the distance between the client and the data center is much closer. The application of geo-replication in general replicates data in all data centers. As a result, the cost of implementation is high because it requires a lot of resources. Because of the various advantages and disadvantages in its application, it is necessary to group geo-replication techniques to make it easier for researchers and technicians to adjust as needed. Therefore, this paper surveys the articles on Geo-replication techniques to implement cost-effectiveness and latency. The articles surveyed included a method for selecting replication sites, a method for reducing round trip time, a method according to data type, and selecting a leader to determine which server node to use. The results of the article survey show that implementing geo-replication for cost-effectiveness is more suitable for use in systems where all users do not need to access all data. Meanwhile, low latency is more suitable for systems used by various types of users. This paper can utilize the techniques that have been reviewed to overcome the problem of cost-effectiveness and latency in implementing Geo-replication

    Priority-Driven Differentiated Performance for NoSQL Database-As-a-Service

    Get PDF
    Designing data stores for native Cloud Computing services brings a number of challenges, especially if the Cloud Provider wants to offer database services capable of controlling the response time for specific customers. These requests may come from heterogeneous data-driven applications with conflicting responsiveness requirements. For instance, a batch processing workload does not require the same level of responsiveness as a time-sensitive one. Their coexistence may interfere with the responsiveness of the time-sensitive workload, such as online video gaming, virtual reality, and cloud-based machine learning. This paper presents a modification to the popular MongoDB NoSQL database to enable differentiated per-user/request performance on a priority basis by leveraging CPU scheduling and synchronization mechanisms available within the Operating System. This is achieved with minimally invasive changes to the source code and without affecting the performance and behavior of the database when the new feature is not in use. The proposed extension has been integrated with the access-control model of MongoDB for secure and controlled access to the new capability. Extensive experimentation with realistic workloads demonstrates how the proposed solution is able to reduce the response times for high-priority users/requests, with respect to lower-priority ones, in scenarios with mixed-priority clients accessing the data store

    Efficient Black-box Checking of Snapshot Isolation in Databases

    Full text link
    Snapshot isolation (SI) is a prevalent weak isolation level that avoids the performance penalty imposed by serializability and simultaneously prevents various undesired data anomalies. Nevertheless, SI anomalies have recently been found in production cloud databases that claim to provide the SI guarantee. Given the complex and often unavailable internals of such databases, a black-box SI checker is highly desirable. In this paper we present PolySI, a novel black-box checker that efficiently checks SI and provides understandable counterexamples upon detecting violations. PolySI builds on a novel characterization of SI using generalized polygraphs (GPs), for which we establish its soundness and completeness. PolySI employs an SMT solver and also accelerates SMT solving by utilizing the compact constraint encoding of GPs and domain-specific optimizations for pruning constraints. As demonstrated by our extensive assessment, PolySI successfully reproduces all of 2477 known SI anomalies, detects novel SI violations in three production cloud databases, identifies their causes, outperforms the state-of-the-art black-box checkers under a wide range of workloads, and can scale up to large-sized workloads.Comment: 20 pages, 15 figures, accepted by PVLD

    O|R|P|E -- A Data Semantics Driven Concurrency Control

    Full text link
    This paper presents a concurrency control mechanism that does not follow a 'one concurrency control mechanism fits all needs' strategy. With the presented mechanism a transaction runs under several concurrency control mechanisms and the appropriate one is chosen based on the accessed data. For this purpose, the data is divided into four classes based on its access type and usage (semantics). Class OO (the optimistic class) implements a first-committer-wins strategy, class RR (the reconciliation class) implements a first-n-committers-win strategy, class PP (the pessimistic class) implements a first-reader-wins strategy, and class EE (the escrow class) implements a first-n-readers-win strategy. Accordingly, the model is called \PeFS. The selected concurrency control mechanism may be automatically adapted at run-time according to the current load or a known usage profile. This run-time adaptation allows \Pe to balance the commit rate and the response time even under changing conditions. \Pe outperforms the Snapshot Isolation concurrency control in terms of response time by a factor of approximately 4.5 under heavy transactional load (4000 concurrent transactions). As consequence, the degree of concurrency is 3.2 times higher.Comment: 20 pages, 7 tables, 15 figure

    Modern data analytics in the cloud era

    Get PDF
    Cloud Computing ist die dominante Technologie des letzten Jahrzehnts. Die Benutzerfreundlichkeit der verwalteten Umgebung in Kombination mit einer nahezu unbegrenzten Menge an Ressourcen und einem nutzungsabhängigen Preismodell ermöglicht eine schnelle und kosteneffiziente Projektrealisierung für ein breites Nutzerspektrum. Cloud Computing verändert auch die Art und Weise wie Software entwickelt, bereitgestellt und genutzt wird. Diese Arbeit konzentriert sich auf Datenbanksysteme, die in der Cloud-Umgebung eingesetzt werden. Wir identifizieren drei Hauptinteraktionspunkte der Datenbank-Engine mit der Umgebung, die veränderte Anforderungen im Vergleich zu traditionellen On-Premise-Data-Warehouse-Lösungen aufweisen. Der erste Interaktionspunkt ist die Interaktion mit elastischen Ressourcen. Systeme in der Cloud sollten Elastizität unterstützen, um den Lastanforderungen zu entsprechen und dabei kosteneffizient zu sein. Wir stellen einen elastischen Skalierungsmechanismus für verteilte Datenbank-Engines vor, kombiniert mit einem Partitionsmanager, der einen Lastausgleich bietet und gleichzeitig die Neuzuweisung von Partitionen im Falle einer elastischen Skalierung minimiert. Darüber hinaus führen wir eine Strategie zum initialen Befüllen von Puffern ein, die es ermöglicht, skalierte Ressourcen unmittelbar nach der Skalierung auszunutzen. Cloudbasierte Systeme sind von fast überall aus zugänglich und verfügbar. Daten werden häufig von zahlreichen Endpunkten aus eingespeist, was sich von ETL-Pipelines in einer herkömmlichen Data-Warehouse-Lösung unterscheidet. Viele Benutzer verzichten auf die Definition von strikten Schemaanforderungen, um Transaktionsabbrüche aufgrund von Konflikten zu vermeiden oder um den Ladeprozess von Daten zu beschleunigen. Wir führen das Konzept der PatchIndexe ein, die die Definition von unscharfen Constraints ermöglichen. PatchIndexe verwalten Ausnahmen zu diesen Constraints, machen sie für die Optimierung und Ausführung von Anfragen nutzbar und bieten effiziente Unterstützung bei Datenaktualisierungen. Das Konzept kann auf beliebige Constraints angewendet werden und wir geben Beispiele für unscharfe Eindeutigkeits- und Sortierconstraints. Darüber hinaus zeigen wir, wie PatchIndexe genutzt werden können, um fortgeschrittene Constraints wie eine unscharfe Multi-Key-Partitionierung zu definieren, die eine robuste Anfrageperformance bei Workloads mit unterschiedlichen Partitionsanforderungen bietet. Der dritte Interaktionspunkt ist die Nutzerinteraktion. Datengetriebene Anwendungen haben sich in den letzten Jahren verändert. Neben den traditionellen SQL-Anfragen für Business Intelligence sind heute auch datenwissenschaftliche Anwendungen von großer Bedeutung. In diesen Fällen fungiert das Datenbanksystem oft nur als Datenlieferant, während der Rechenaufwand in dedizierten Data-Science- oder Machine-Learning-Umgebungen stattfindet. Wir verfolgen das Ziel, fortgeschrittene Analysen in Richtung der Datenbank-Engine zu verlagern und stellen das Grizzly-Framework als DataFrame-zu-SQL-Transpiler vor. Auf dieser Grundlage identifizieren wir benutzerdefinierte Funktionen (UDFs) und maschinelles Lernen (ML) als wichtige Aufgaben, die von einer tieferen Integration in die Datenbank-Engine profitieren würden. Daher untersuchen und bewerten wir Ansätze für die datenbankinterne Ausführung von Python-UDFs und datenbankinterne ML-Inferenz.Cloud computing has been the groundbreaking technology of the last decade. The ease-of-use of the managed environment in combination with nearly infinite amount of resources and a pay-per-use price model enables fast and cost-efficient project realization for a broad range of users. Cloud computing also changes the way software is designed, deployed and used. This thesis focuses on database systems deployed in the cloud environment. We identify three major interaction points of the database engine with the environment that show changed requirements compared to traditional on-premise data warehouse solutions. First, software is deployed on elastic resources. Consequently, systems should support elasticity in order to match workload requirements and be cost-effective. We present an elastic scaling mechanism for distributed database engines, combined with a partition manager that provides load balancing while minimizing partition reassignments in the case of elastic scaling. Furthermore we introduce a buffer pre-heating strategy that allows to mitigate a cold start after scaling and leads to an immediate performance benefit using scaling. Second, cloud based systems are accessible and available from nearly everywhere. Consequently, data is frequently ingested from numerous endpoints, which differs from bulk loads or ETL pipelines in a traditional data warehouse solution. Many users do not define database constraints in order to avoid transaction aborts due to conflicts or to speed up data ingestion. To mitigate this issue we introduce the concept of PatchIndexes, which allow the definition of approximate constraints. PatchIndexes maintain exceptions to constraints, make them usable in query optimization and execution and offer efficient update support. The concept can be applied to arbitrary constraints and we provide examples of approximate uniqueness and approximate sorting constraints. Moreover, we show how PatchIndexes can be exploited to define advanced constraints like an approximate multi-key partitioning, which offers robust query performance over workloads with different partition key requirements. Third, data-centric workloads changed over the last decade. Besides traditional SQL workloads for business intelligence, data science workloads are of significant importance nowadays. For these cases the database system might only act as data delivery, while the computational effort takes place in data science or machine learning (ML) environments. As this workflow has several drawbacks, we follow the goal of pushing advanced analytics towards the database engine and introduce the Grizzly framework as a DataFrame-to-SQL transpiler. Based on this we identify user-defined functions (UDFs) and machine learning inference as important tasks that would benefit from a deeper engine integration and investigate approaches to push these operations towards the database engine

    Towards Scalable Real-time Analytics:: An Architecture for Scale-out of OLxP Workloads

    Get PDF
    We present an overview of our work on the SAP HANA Scale-out Extension, a novel distributed database architecture designed to support large scale analytics over real-time data. This platform permits high performance OLAP with massive scale-out capabilities, while concurrently allowing OLTP workloads. This dual capability enables analytics over real-time changing data and allows fine grained user-specified service level agreements (SLAs) on data freshness. We advocate the decoupling of core database components such as query processing, concurrency control, and persistence, a design choice made possible by advances in high-throughput low-latency networks and storage devices. We provide full ACID guarantees and build on a logical timestamp mechanism to provide MVCC-based snapshot isolation, while not requiring synchronous updates of replicas. Instead, we use asynchronous update propagation guaranteeing consistency with timestamp validation. We provide a view into the design and development of a large scale data management platform for real-time analytics, driven by the needs of modern enterprise customers

    Efficient Geo-Distributed Transaction Processing

    Get PDF
    Distributed deterministic database systems support OLTP workloads over geo-replicated data. Providing these transactions with ACID guarantees requires a delay of multiple wide-area network (WAN) round trips of messaging to totally order transactions globally. This thesis presents Sloth, a geo-replicated database system that can serializably commit transactions after a delay of only a single WAN round trip of messaging. Sloth reduces the cost of determining the total global order for all transactions by leveraging deterministic merging of partial sequences of transactions per geographic region. Using popular workload benchmarks over geo-replicated Azure, this thesis shows that Sloth outperforms state-of-the-art comparison systems to deliver low-latency transaction execution

    The LDBC Financial Benchmark

    Full text link
    The Linked Data Benchmark Council's Financial Benchmark (LDBC FinBench) is a new effort that defines a graph database benchmark targeting financial scenarios such as anti-fraud and risk control. The benchmark has one workload, the Transaction Workload, currently. It captures OLTP scenario with complex, simple read queries and write queries that continuously insert or delete data in the graph. Compared to the LDBC SNB, the LDBC FinBench differs in application scenarios, data patterns, and query patterns. This document contains a detailed explanation of the data used in the LDBC FinBench, the definition of transaction workload, a detailed description for all queries, and instructions on how to use the benchmark suite.Comment: For the source code of this specification, see the ldbc_finbench_docs repository on Githu

    SAP HANA distributed in-memory database system: Transaction, session, and metadata management

    Get PDF
    One of the core principles of the SAP HANA database system is the comprehensive support of distributed query facility. Supporting scale-out scenarios was one of the major design principles of the system from the very beginning. Within this paper, we first give an overview of the overall functionality with respect to data allocation, metadata caching and query routing. We then dive into some level of detail for specific topics and explain features and methods not common in traditional disk-based database systems. In summary, the paper provides a comprehensive overview of distributed query processing in SAP HANA database to achieve scalability to handle large databases and heterogeneous types of workloads
    corecore