3,013 research outputs found

    Heuristics for scheduling a two-stage hybrid flow shop with parallel batching machines: application at a hospital sterilisation plant

    Get PDF
    The model of a two-stage hybrid (or flexible) flow shop, with sequence-independent uniform setup times, parallel batching machines and parallel batches has been analysed with the purpose of reducing the number of tardy jobs and the makespan in a sterilisation plant. Jobs are processed in parallel batches by multiple identical parallel machines. Manual operations preceding each of the two stages have been dealt with as machine setup with standardised times and are sequence-independent. A mixed-integer model is proposed. Two heuristics have been tested on real benchmark data from an existing sterilisation plant: constrained size of parallel batches and fixed time slots. Computation experiments performed on combinations of machines and operator numbers suggest balancing the two stages by assigning operators proportionally to the setup time requirements

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Dynamic set-up rules for hybrid flow shop scheduling with parallel batching machines

    Get PDF
    An S-stage hybrid (or flexible) flow shop, with sequence-independent uniform set-up times, parallel batching machines with compatible parallel batch families (like in casting or heat treatments in furnaces, chemical or galvanic baths, painting in autoclave, etc.) has been analysed with the purpose of reducing the number of tardy jobs (and the makespan); in Graham’s notation: FPB(m_1, m_2, … , m_S)|p-batch, STsi,b|SUM(Ui). Jobs are sorted dynamically (at each new delivery); batches are closed within sliding (or rolling) time windows and processed in parallel by multiple identical machines. Computation experiments have shown the better performance on benchmarks of the two proposed heuristics based on new formulations of the critical ratio (CRsetup) considering the ratio of allowance set-up and processing time in the scheduling horizon, which improves the weighted modified operation due date rule

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Column generation for minimizing total completion time in a parallel-batching environment

    Get PDF
    This paper deals with the 1 | p- batch , sj≤ b| ∑ Cj scheduling problem, where jobs are scheduled in batches on a single machine in order to minimize the total completion time. A size is given for each job, such that the total size of each batch cannot exceed a fixed capacity b. A graph-based model is proposed for computing a very effective lower bound based on linear programming; the model, with an exponential number of variables, is solved by column generation and embedded into both a heuristic price and branch algorithm and an exact branch and price algorithm. The same model is able to handle parallel-machine problems like Pm| p- batch , sj≤ b| ∑ Cj very efficiently. Computational results show that the new lower bound strongly dominates the bounds currently available in the literature, and the proposed heuristic algorithm is able to achieve high-quality solutions on large problems in a reasonable computation time. For the single-machine case, the exact branch and price algorithm is able to solve all the tested instances with 30 jobs and a good amount of 40-job examples

    Scheduling of unit-length jobs with bipartite incompatibility graphs on four uniform machines

    Full text link
    In the paper we consider the problem of scheduling nn identical jobs on 4 uniform machines with speeds s1s2s3s4,s_1 \geq s_2 \geq s_3 \geq s_4, respectively. Our aim is to find a schedule with a minimum possible length. We assume that jobs are subject to some kind of mutual exclusion constraints modeled by a bipartite incompatibility graph of degree Δ\Delta, where two incompatible jobs cannot be processed on the same machine. We show that the problem is NP-hard even if s1=s2=s3s_1=s_2=s_3. If, however, Δ4\Delta \leq 4 and s112s2s_1 \geq 12 s_2, s2=s3=s4s_2=s_3=s_4, then the problem can be solved to optimality in time O(n1.5)O(n^{1.5}). The same algorithm returns a solution of value at most 2 times optimal provided that s12s2s_1 \geq 2s_2. Finally, we study the case s1s2s3=s4s_1 \geq s_2 \geq s_3=s_4 and give an O(n1.5)O(n^{1.5})-time 32/1532/15-approximation algorithm in all such situations

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed
    corecore