400 research outputs found

    A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    Get PDF
    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems

    Development of a Prototype Miniature Silicon Microgyroscope

    Get PDF
    A miniature vacuum-packaged silicon microgyroscope (SMG) with symmetrical and decoupled structure was designed to prevent unintended coupling between drive and sense modes. To ensure high resonant stability and strong disturbance resisting capacity, a self-oscillating closed-loop circuit including an automatic gain control (AGC) loop based on electrostatic force feedback is adopted in drive mode, while, dual-channel decomposition and reconstruction closed loops are applied in sense mode. Moreover, the temperature effect on its zero bias was characterized experimentally and a practical compensation method is given. The testing results demonstrate that the useful signal and quadrature signal will not interact with each other because their phases are decoupled. Under a scale factor condition of 9.6 mV/°/s, in full measurement range of ± 300 deg/s, the zero bias stability reaches 15°/h with worse-case nonlinearity of 400 ppm, and the temperature variation trend of the SMG bias is thus largely eliminated, so that the maximum bias value is reduced to one tenth of the original after compensation from -40 °C to 80 °C

    Development of a wireless MEMS inertial system for health monitoring of structures

    Get PDF
    Health monitoring of structures by experimental modal analysis is typically performed with piezoelectric based transducers. These transducers are usually heavy, large in size, and require high power to operate, all of which reduce their versatility and applicability to small components and structures. The advanced developments of microfabrication and microelectromechanical systems (MEMS) have lead to progressive designs of small footprint, low dynamic mass and actuation power, and high-resolution inertial sensors. Because of their small dimensions and masses, MEMS inertial sensors could potentially replace the piezoelectric transducers for experimental modal analysis of small components and structures. To transfer data from MEMS inertial sensors to signal analyzers, traditional wiring methods may be utilized. Such methods provide reliable data transfer and are simple to integrate. However, in order to study complex structures, multiple inertial sensors, attached to different locations on a structure, are required. In such cases, using wires increases complexity and eliminates possibility of achieving long distance monitoring. Therefore, there is a need to implement wireless communications capabilities to MEMS sensors. In this thesis, two different wireless communication systems have been developed to achieve wireless health monitoring of structures using MEMS inertial sensors. One of the systems is designed to transmit analog signals, while the other transmits digital signals. The analog wireless system is characterized by a linear frequency response function in the range of 400 Hz to 16 kHz, which covers the frequency bandwidth of the MEMS inertial sensors. This system is used to perform modal analysis of a test structure by applying multiple sensors to the structure. To verify the results obtained with MEMS inertial sensors, noninvasive, laser optoelectronic holography (OEH) methodology is utilized to determine modal characteristics of the structure. The structure is also modeled with analytical and computational methods for correlation of and verification with the experimental measurements. Results indicate that attachment of MEMS inertial sensors, in spite of their small mass, has measurable effects on the modal characteristics of the structure being considered, verifying their applicability in health monitoring of structures. The digital wireless system is used to perform high resolution tilt and rotation measurements of an object subjected to angular and linear accelerations. Since the system has been developed based on a microcontroller, programs have been developed to interface the output signals of the sensors to the microcontroller and RF components. The system is calibrated using the actual driving electronics of the MEMS sensors, and it has achieved an angular resolution of 1.8 mrad. The results show viability of the wireless MEMS inertial sensors in applications requiring accurate tilt and rotation measurements. Additional results presented included application of a MEMS gyroscope and microcontroller to perform angular rate measurements. Since the MEMS gyroscope only generates analog output signals, an analog to digital conversion circuit was developed. Also, a program has been developed to perform analog to digital conversion with two decimal places of accuracy. The experimental results demonstrate feasibility of using the microcontroller and the gyroscope to perform wireless angular rate measurements

    Micro guidance and control synthesis: New components, architectures, and capabilities

    Get PDF
    New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about

    Flight Attitude and Acceleration Data Recorder

    Get PDF
    This document outlines the design and implementation of a low-cost, low-power acceleration data recorder for utility category gliders. Working from literature and experience, we have built a recorder that can accurately measure the forces and angle experienced by a glider in flight. The recorder is able to record and display acceleration force and angular rates of turn as well as display and analyze post-flight data utilizing software created for a personal digital assistant and personal computer

    Low Power Cmos Circuit Design And Reliability Analysis For Wireless Me

    Get PDF
    A sensor node \u27AccuMicroMotion\u27 is proposed that has the ability to detect motion in 6 degrees of freedom for the application of physiological activity monitoring. It is expected to be light weight, low power, small and cheap. The sensor node may collect and transmit 3 axes of acceleration and 3 axes of angular rotation signals from MEMS transducers wirelessly to a nearby base station while attached to or implanted in human body. This dissertation proposes a wireless electronic system-on-a-single-chip to implement the sensor in a traditional CMOS process. The system is low power and may operate 50 hours from a single coin cell battery. A CMOS readout circuit, an analog to digital converter and a wireless transmitter is designed to implement the proposed system. In the architecture of the \u27AccuMicroMotion\u27 system, the readout circuit uses chopper stabilization technique and can resolve DC to 1 KHz and 200 nV signals from MEMS transducers. The base band signal is digitized using a 10-bit successive approximation register analog to digital converter. Digitized outputs from up to nine transducers can be combined in a parallel to serial converter for transmission by a 900 MHz RF transmitter that operates in amplitude shift keying modulation technique. The transmitter delivers a 2.2 mW power to a 50 Ù antenna. The system consumes an average current of 4.8 mA from a 3V supply when 6 sensors are in operation and provides an overall 60 dB dynamic range. Furthermore, in this dissertation, a methodology is developed that applies accelerated electrical stress on MOS devices to extract BSIM3 models and RF parameters through measurements to perform comprehensive study, analysis and modeling of several analog and RF circuits under hot carrier and breakdown degradation

    Portable low-power electronic interface for explosive detection using microcantilevers

    Get PDF
    Microcantilevers have been recently revealed as a highly effective technique for gas detection at trace level when acting as chemical sensors. However, an important milestone still remains to achieve a full-scale development in commercial applications: the cumbersome systems traditionally used to read-out its responses. To accomplish this, a portable low-power electronic interface, based on an analog lock-in amplifier processing square signals, which is fully capable of creating the excitation signal as well as obtaining the response values from resonating microcantilevers functionalized with zeolite based coatings has been herein attempted. The so obtained read-out results are in good agreement with the commercial lock-in amplifier's measurements, demonstrating the accuracy and reliability of the electronic interface. Finally, its performance has been validated for 2-nitrotoluene (o-MNT) detection at ppm V level, as an example of an explosive-related molecule, with BEA zeolite coated microcantilevers. Theoretical limit of detection (LOD) values below 100 ppb have been obtained for Co exchanged BEA modified sensors

    Vision-based Navigation from Wheels to Wings

    Get PDF
    We describe an incremental approach towards the development of autonomous indoor flyers that use only vision to navigate in textured environments. In order to cope with the severe weight and energy constraints of such systems, we use spiking neural controllers that can be implemented in tiny micro-controllers and map visual information into motor commands. The network morphology is evolved by means of an evolutionary process on the physical robots. This methodology is tested in three robots of increasing complexity, from a wheeled robot to a dirigible to a winged robot. The paper describes the approach, the robots, their degrees of complexity, and summarizes results. In addition, three compatible electronic boards and a choice of vision sensors suitable for these robots are described in more details. These boards allow a comparative and gradual development of spiking neural controllers for flying robots

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Smart sensors

    Full text link
    This paper is a state-of-the-art review of solid-state integrated and smart sensors. Smart sensors are defined as sensors that provide analog signal processing of signals recorded by sensors, digital representation of the analog signal, address and data transfer through a bidirectional digital bus and manipulation and computation of the sensor-derived data. In this paper the overall architecture and functions of circuit blocks necessary for smart sensors are presented and discussed. Circuit fabrication technologies are briefly discussed and CMOS technology is found to be ideally suited for many sensor applications. The challenges and techniques for the packaging of smart sensors are briefly reviewed and several specific examples of solid-state integrated and smart sensors are presented. It is believed that smart sensors will be needed in future closed-loop instrumentation and that control systems will be required in many application areas, including automative, health care, industrial processing and consumer electronics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49022/2/jm910202.pd
    • …
    corecore