5,587 research outputs found

    Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty

    Full text link
    In this paper, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.Comment: 18 pages, Submitted for publication to IEEE Transactions on Automatic Contro

    Randomized Constraints Consensus for Distributed Robust Linear Programming

    Get PDF
    In this paper we consider a network of processors aiming at cooperatively solving linear programming problems subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under time-varying, asynchronous and directed communication topology. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: (i) a verification in which they check-in a randomized setup-the robust feasibility (and hence optimality) of the candidate optimal point, and (ii) an optimization step in which they exchange their candidate bases (minimal sets of active constraints) with neighbors and locally solve an optimization problem whose constraint set includes: a sampled constraint violating the candidate optimal point (if it exists), agent's current basis and the collection of neighbor's basis. As main result, we show that if a processor successfully performs the verification step for a sufficient number of communication rounds, it can stop the algorithm since a consensus has been reached. The common solution is-with high confidence-feasible (and hence optimal) for the entire set of uncertainty except a subset having arbitrary small probability measure. We show the effectiveness of the proposed distributed algorithm on a multi-core platform in which the nodes communicate asynchronously.Comment: Accepted for publication in the 20th World Congress of the International Federation of Automatic Control (IFAC

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    A Statistical Learning Theory Approach for Uncertain Linear and Bilinear Matrix Inequalities

    Full text link
    In this paper, we consider the problem of minimizing a linear functional subject to uncertain linear and bilinear matrix inequalities, which depend in a possibly nonlinear way on a vector of uncertain parameters. Motivated by recent results in statistical learning theory, we show that probabilistic guaranteed solutions can be obtained by means of randomized algorithms. In particular, we show that the Vapnik-Chervonenkis dimension (VC-dimension) of the two problems is finite, and we compute upper bounds on it. In turn, these bounds allow us to derive explicitly the sample complexity of these problems. Using these bounds, in the second part of the paper, we derive a sequential scheme, based on a sequence of optimization and validation steps. The algorithm is on the same lines of recent schemes proposed for similar problems, but improves both in terms of complexity and generality. The effectiveness of this approach is shown using a linear model of a robot manipulator subject to uncertain parameters.Comment: 19 pages, 2 figures, Accepted for Publication in Automatic
    • …
    corecore