1,293 research outputs found

    General dd-level quantum multi-secret sharing scheme with cheating identification

    Full text link
    This work proposes a dd-dimensional quantum multi-secret sharing (QMSS) scheme with a cheat detection mechanism. The dealer creates the secret shares using multi access structures and a monotone span program. To detect the participant's deceit, the dealer distributes secret share shadows derived from a random invertible matrix XX to the participants, stored in the Black box. The cheat detection mechanism of the Black box identifies the participant's deceitful behavior during the secret recovery phase. Only honest participants authenticated by the Black box acquire their secret shares to recover the multiple secrets. After the Black box cheating verification, the participants reconstruct the secrets by utilizing the unitary operations and quantum Fourier transform. The proposed protocol is reliable to prevent attacks from eavesdroppers and participants. The proposed protocol provides greater versatility, security, and practicality

    The Effect of Eavesdropper's Statistics in Experimental Wireless Secret-Key Generation

    Full text link
    This paper investigates the role of the eavesdropper's statistics in the implementation of a practical secret-key generation system. We carefully conduct the information-theoretic analysis of a secret-key generation system from wireless channel gains measured with software-defined radios. In particular, we show that it is inaccurate to assume that the eavesdropper gets no information because of decorrelation with distance. We also provide a bound for the achievable secret-key rate in the finite key-length regime that takes into account the presence of correlated eavesdropper's observations. We evaluate this bound with our experimental gain measurements to show that operating with a finite number of samples incurs a loss in secret-key rate on the order of 20%.Comment: Submitted to the IEEE Transactions on Information Forensics and Securit

    A 2 & 3 Player Scheme for Quantum Direct Communication

    Full text link
    This paper introduces two information-theoretically secure protocols that achieve quantum secure direct communication between Alice and Bob in the first case, and among Alice, Bod and Charlie in the second case. Both protocols use the same novel method to embed the secret information in the entangled composite system of the players. The way of encoding the information is the main novelty of this paper and the distinguishing feature compared to previous works in the field. The advantage of this method is that it is easily extensible and can be generalized to a setting involving three, or even more, players, as demonstrated with the second protocol. This trait can be beneficial when two spatially separated players posses only part of the secret information that must be combined and transmitted to Alice in order for her to reveal the complete secret. Using the three player protocol, this task can be achieved in one go, without the need to apply a typical QSDC protocol twice, where Alice first receives Bob's information and afterwards Charlie's information. Another characteristic of both protocols is their simplicity and uniformity. The two player protocol relies on EPR pairs, and the three player protocol on GHZ triples, which can be easily prepared with our current technology. In the same vein, the local quantum circuits are similar or identical, and are easily constructible as they employ only Hadamard and CNOT gates

    Quantum Information Science

    Get PDF
    Quantum computing is implicated as a next-generation solution to supplement traditional von Neumann architectures in an era of post-Moores law computing. As classical computational infrastructure becomes more limited, quantum platforms offer expandability in terms of scale, energy-consumption, and native three-dimensional problem modeling. Quantum information science is a multidisciplinary field drawing from physics, mathematics, computer science, and photonics. Quantum systems are expressed with the properties of superposition and entanglement, evolved indirectly with operators (ladder operators, master equations, neural operators, and quantum walks), and transmitted (via quantum teleportation) with entanglement generation, operator size manipulation, and error correction protocols. This paper discusses emerging applications in quantum cryptography, quantum machine learning, quantum finance, quantum neuroscience, quantum networks, and quantum error correction

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8
    corecore