31,309 research outputs found

    Relations between cells in cellular manufacturing

    Get PDF
    The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.

    Management control of supplier relationships in manufacturing: a case study in the automotive industry.

    Get PDF
    This paper studies management control design of supplier relationships in manufacturing, a supply chain phase currently under-explored. Compared to supplier relations during procurement and R&D, which research found to be governed by a combination of formal and informal controls, supplier relations in manufacturing are more formal, so that they could be governed by more formal and less informal controls. To refine the management control system and influencing contingencies, we propose a theoretical framework specifically adapted for the manufacturing stage. This framework is investigated by an in depth case study of the supplier management control of a Volvo Cars production facility. We identify three types of suppliers visualizing the associations in the framework and illustrating the framework’s explicative power in (automotive) manufacturing. Furthermore, the case contradicts that supplier relations in the manufacturing phase are governed by little informal control, because the automaker highly values the role of trust building and social pressure. Most notably, a structured supplier team functions as a clan and establishes informal control among participating suppliers, which strengthens the automaker’s control on dyadic supplier relations.management control; supplier relationships; manufacturing; contingency theory; case research;

    Data Engineering for the Analysis of Semiconductor Manufacturing Data

    Get PDF
    We have analyzed manufacturing data from several different semiconductor manufacturing plants, using decision tree induction software called Q-YIELD. The software generates rules for predicting when a given product should be rejected. The rules are intended to help the process engineers improve the yield of the product, by helping them to discover the causes of rejection. Experience with Q-YIELD has taught us the importance of data engineering -- preprocessing the data to enable or facilitate decision tree induction. This paper discusses some of the data engineering problems we have encountered with semiconductor manufacturing data. The paper deals with two broad classes of problems: engineering the features in a feature vector representation and engineering the definition of the target concept (the classes). Manufacturing process data present special problems for feature engineering, since the data have multiple levels of granularity (detail, resolution). Engineering the target concept is important, due to our focus on understanding the past, as opposed to the more common focus in machine learning on predicting the future

    Analysis-of-marginal-Tail-Means (ATM): a robust method for discrete black-box optimization

    Full text link
    We present a new method, called Analysis-of-marginal-Tail-Means (ATM), for effective robust optimization of discrete black-box problems. ATM has important applications to many real-world engineering problems (e.g., manufacturing optimization, product design, molecular engineering), where the objective to optimize is black-box and expensive, and the design space is inherently discrete. One weakness of existing methods is that they are not robust: these methods perform well under certain assumptions, but yield poor results when such assumptions (which are difficult to verify in black-box problems) are violated. ATM addresses this via the use of marginal tail means for optimization, which combines both rank-based and model-based methods. The trade-off between rank- and model-based optimization is tuned by first identifying important main effects and interactions, then finding a good compromise which best exploits additive structure. By adaptively tuning this trade-off from data, ATM provides improved robust optimization over existing methods, particularly in problems with (i) a large number of factors, (ii) unordered factors, or (iii) experimental noise. We demonstrate the effectiveness of ATM in simulations and in two real-world engineering problems: the first on robust parameter design of a circular piston, and the second on product family design of a thermistor network

    Item-by-item sampling for promotional purposes

    Get PDF
    This is an accepted manuscript of an article accepted for publication by Taylor & Francis in Quality Technology & Quantitative Management on 7 June 2017, available online at doi: http://www.tandfonline.com/doi/abs/10.1080/16843703.2017.1335494In this paper we present a method for sampling items that are checked on a pass/fail basis, with a view to a statement being made about the success/failure rate for the purposes of promoting an organisation’s product/service to potential clients/customers. Attention is paid to the appropriate use of statistical phrases for the statements and this leads to the use of Bayesian credible intervals, thus it exceeds what can achieved with standard acceptance sampling techniques. The hypergeometric distribution is used to calculate successive stopping rules so that the resources used for sampling can be minimised. Extensions to the sampling procedure are considered to allow the potential for stronger and weaker statements to be made as sampling progresses. The relationship between the true error rate and the probabilities of making correct statements is discussed.Peer reviewedFinal Accepted Versio

    Lessons learned for composite structures

    Get PDF
    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes
    corecore