1,042 research outputs found

    Plug & Test at System Level via Testable TLM Primitives

    Get PDF
    With the evolution of Electronic System Level (ESL) design methodologies, we are experiencing an extensive use of Transaction-Level Modeling (TLM). TLM is a high-level approach to modeling digital systems where details of the communication among modules are separated from the those of the implementation of functional units. This paper represents a first step toward the automatic insertion of testing capabilities at the transaction level by definition of testable TLM primitives. The use of testable TLM primitives should help designers to easily get testable transaction level descriptions implementing what we call a "Plug & Test" design methodology. The proposed approach is intended to work both with hardware and software implementations. In particular, in this paper we will focus on the design of a testable FIFO communication channel to show how designers are given the freedom of trading-off complexity, testability levels, and cos

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Power Minimisation Techniques for Testing Low Power VLSI Circuits (PhD Dissertation)

    No full text
    Testing low power very large scale integrated (VLSI) circuits has recently become an area of concern due to yield and reliability problems. This dissertation focuses on minimising power dissipation during test application at logic level and register-transfer level (RTL) of abstraction of the VLSI design flow. The first part of this dissertation addresses power minimisation techniques in scan sequential circuits at the logic level of abstraction. A new best primary input change (BPIC) technique based on a novel test application strategy has been proposed. The technique increases the correlation between successive states during shifting in test vectors and shifting out test responses by changing the primary inputs such that the smallest number of transitions is achieved. The new technique is test set dependent and it is applicable to small to medium sized full and partial scan sequential circuits. Since the proposed test application strategy depends only on controlling primary input change time, power is minimised with no penalty in test area, performance, test efficiency, test application time or volume of test data. Furthermore, it is shown that partial scan does not provide only the commonly known benefits such as less test area overhead and test application time, but also less power dissipation during test application when compared to full scan. To achieve power savings in large scan sequential circuits a new test set independent multiple scan chain-based technique which employs a new design for test (DFT) architecture and a novel test application strategy, is presented. The technique has been validated using benchmark examples, and it has been shown that power is minimised with low computational time, low overhead in test area and volume of test data, and with no penalty in test application time, test efficiency, or performance. The second part of this dissertation addresses power minimisation techniques for testing low power VLSI circuits using built-in self-test (BIST) at RTL. First, it is important to overcome the shortcomings associated with traditional BIST methodologies. It is shown how a new BIST methodology for RTL data paths using a novel concept called test compatibility classes (TCC) overcomes high test application time, BIST area overhead, performance degradation, volume of test data, fault-escape probability, and complexity of the testable design space exploration. Second, power minimisation in BIST RTL data paths is achieved by analysing the effect of test synthesis and test scheduling on power dissipation during test application and by employing new power conscious test synthesis and test scheduling algorithms. Third, the new BIST methodology has been validated using benchmark examples. Further, it is shown that when the proposed power conscious test synthesis and test scheduling is combined with novel test compatibility classes simultaneous reduction in test application time and power dissipation is achieved with low overhead in computational time

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure

    Analysis of Hardware Descriptions

    Get PDF
    The design process for integrated circuits requires a lot of analysis of circuit descriptions. An important class of analyses determines how easy it will be to determine if a physical component suffers from any manufacturing errors. As circuit complexities grow rapidly, the problem of testing circuits also becomes increasingly difficult. This thesis explores the potential for analysing a recent high level hardware description language called Ruby. In particular, we are interested in performing testability analyses of Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have sought transformations that improve testability while preserving behaviour. The analysis of Ruby descriptions is performed by adapting a technique called abstract interpretation. This has been used successfully to analyse functional programs. This technique is most applicable where the analysis to be captured operates over structures isomorphic to the structure of the circuit. Many digital systems analysis tools require the circuit description to be given in some special form. This can lead to inconsistency between representations, and involves additional work converting between representations. We propose using the original description medium, in this case Ruby, for performing analyses. A related technique, called non-standard interpretation, is shown to be very useful for capturing many circuit analyses. An implementation of a system that performs non-standard interpretation forms the central part of the work. This allows Ruby descriptions to be analysed using alternative interpretations such test pattern generation and circuit layout interpretations. This system follows a similar approach to Boute's system semantics work and O'Donnell's work on Hydra. However, we have allowed a larger class of interpretations to be captured and offer a richer description language. The implementation presented here is constructed to allow a large degree of code sharing between different analyses. Several analyses have been implemented including simulation, test pattern generation and circuit layout. Non-standard interpretation provides a good framework for implementing these analyses. A general model for making non-standard interpretations is presented. Combining forms that combine two interpretations to produce a new interpretation are also introduced. This allows complex circuit analyses to be decomposed in a modular manner into smaller circuit analyses which can be built independently

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented
    • …
    corecore