110 research outputs found

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Model Order Reduction by Proper Orthogonal Decomposition

    Get PDF
    We provide an introduction to POD-MOR with focus on (nonlinear) parametric PDEs and (nonlinear) time-dependent PDEs, and PDE constrained optimization with POD surrogate models as application. We cover the relation of POD and SVD, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0505

    Model Order Reduction by Proper Orthogonal Decomposition

    Get PDF

    Snapshot-Based Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Polynomial approximation of high-dimensional Hamilton–Jacobi–Bellman equations and applications to feedback control of semilinear parabolic PDES

    Get PDF
    © 2018 Society for Industrial and Applied Mathematics. A procedure for the numerical approximation of high-dimensional Hamilton–Jacobi–Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the successive Galerkin approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen

    Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    Get PDF
    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California

    Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in Haemodynamics

    Get PDF
    The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions of a partial differential equation (PDE), representing a constraint for the minimization problem. The solution of these problems induce large computational costs due to the numerical discretization of PDEs and to iterative procedures usually required by numerical optimization (many-query context). In order to reduce the computational complexity, we take advantage of the reduced basis (RB) approximation for parametrized PDEs, once the state problem has been reformulated in parametrized form. This method enables a rapid and reliable approximation of parametrized PDEs by constructing low-dimensional, problem-specific approximation spaces. In case of PDEs defined over domains of variable shapes (e.g. in shape optimization problems) we need to introduce suitable, low-dimensional shape parametrization techniques in order to tackle the geometrical complexity. Free-Form Deformations and Radial-Basis Functions techniques have been analyzed and successfully applied with this aim. We analyze the reduced framework built by coupling these tools and apply it to the solution of optimal control and shape optimization problems. Robust optimization problems under uncertain conditions are also taken into consideration. Moreover, both deterministic and Bayesian frameworks are set in order to tackle inverse identification problems. As state equations, we consider steady viscous flow problems described by Stokes or Navier-Stokes equations, for which we provide a detailed analysis and construction of RB approximation and a posteriori error estimation. Several numerical test cases are also illustrated to show efficacy and reliability of RB approximations. We exploit this general reduced framework to solve some optimization and inverse problems arising in haemodynamics. More specifically, we focus on the optimal design of cardiovascular prostheses, such as bypass grafts, and on inverse identification of pathological conditions or flow/shape features in realistic parametrized geometries, such as carotid artery bifurcations

    A non-overlapping optimization-based domain decomposition approach to component-based model reduction of incompressible flows

    Full text link
    We present a component-based model order reduction procedure to efficiently and accurately solve parameterized incompressible flows governed by the Navier-Stokes equations. Our approach leverages a non-overlapping optimization-based domain decomposition technique to determine the control variable that minimizes jumps across the interfaces between sub-domains. To solve the resulting constrained optimization problem, we propose both Gauss-Newton and sequential quadratic programming methods, which effectively transform the constrained problem into an unconstrained formulation. Furthermore, we integrate model order reduction techniques into the optimization framework, to speed up computations. In particular, we incorporate localized training and adaptive enrichment to reduce the burden associated with the training of the local reduced-order models. Numerical results are presented to demonstrate the validity and effectiveness of the overall methodology

    Parametric free-form shape design with PDE models and reduced basis method

    Get PDF
    We present a coupling of the reduced basis methods and free-form deformations for shape optimization and design of systems modelled by elliptic PDEs. The free-form deformations give a parameterization of the shape that is independent of the mesh, the initial geometry, and the underlying PDE model. The resulting parametric PDEs are solved by reduced basis methods. An important role in our implementation is played by the recently proposed empirical interpolation method, which allows approximating the non-affinely parameterized deformations with affinely parameterized ones. These ingredients together give rise to an efficient online computational procedure for a repeated evaluation design environment like the one for shape optimization. The proposed approach is demonstrated on an airfoil inverse design problem. © 2010 Elsevier B.V
    • …
    corecore