7,557 research outputs found

    Community Structure in the United States House of Representatives

    Get PDF
    We investigate the networks of committee and subcommittee assignments in the United States House of Representatives from the 101st--108th Congresses, with the committees connected by ``interlocks'' or common membership. We examine the community structure in these networks using several methods, revealing strong links between certain committees as well as an intrinsic hierarchical structure in the House as a whole. We identify structural changes, including additional hierarchical levels and higher modularity, resulting from the 1994 election, in which the Republican party earned majority status in the House for the first time in more than forty years. We also combine our network approach with analysis of roll call votes using singular value decomposition to uncover correlations between the political and organizational structure of House committees.Comment: 44 pages, 13 figures (some with multiple parts and most in color), 9 tables, to appear in Physica A; new figures and revised discussion (including extra introductory material) for this versio

    Sequential testing for structural stability in approximate factor models

    Get PDF
    We develop a monitoring procedure to detect changes in a large approximate factor model. Letting rr be the number of common factors, we base our statistics on the fact that the (r+1)\left( r+1\right) -th eigenvalue of the sample covariance matrix is bounded under the null of no change, whereas it becomes spiked under changes. Given that sample eigenvalues cannot be estimated consistently under the null, we randomise the test statistic, obtaining a sequence of \textit{i.i.d} statistics, which are used for the monitoring scheme. Numerical evidence shows a very small probability of false detections, and tight detection times of change-points

    Randomness and Complexity in Networks

    Full text link
    I start by reviewing some basic properties of random graphs. I then consider the role of random walks in complex networks and show how they may be used to explain why so many long tailed distributions are found in real data sets. The key idea is that in many cases the process involves copying of properties of near neighbours in the network and this is a type of short random walk which in turn produce a natural preferential attachment mechanism. Applying this to networks of fixed size I show that copying and innovation are processes with special mathematical properties which include the ability to solve a simple model exactly for any parameter values and at any time. I finish by looking at variations of this basic model.Comment: Survey paper based on talk given at the workshop on ``Stochastic Networks and Internet Technology'', Centro di Ricerca Matematica Ennio De Giorgi, Matematica nelle Scienze Naturali e Sociali, Pisa, 17th - 21st September 2007. To appear in proceeding
    • …
    corecore