760 research outputs found

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    SMART: Coordinated Double-Sided Seal Bid Multiunit First Price Auction Mechanism for Cloud-Based TVWS Secondary Spectrum Market

    Get PDF
    Spectrum trading is an important aspect of television white space (TVWS) and it is driven by the failure of spectrum sensing techniques. In spectrum trading, the primary users lease their unoccupied spectrum to the secondary users for a market fee. Although spectrum trading is considered as a reliable approach, it is confronted with a spectrum transaction completion time problem, which negatively impacts on end-users Quality of Service and Quality of Experience metrics. Spectrum transaction completion time is the duration to successfully conduct TVWS spectrum trading. To address this issue, this paper proposes simple mechanism auction reward truthful (SMART), a fast and iterative machine learning-assisted spectrum trading model to address this issue. Simulated results indicate thatSMART out-performs referenced VERUM algorithm in three key performance indicators: bit-error rate, instantaneous throughput, and probability of dropped packets by 10%, 5%, and 15%, respectively

    Auction-based Multi-Channel Cooperative Spectrum Sharing in Hybrid Satellite-Terrestrial IoT Networks

    Get PDF
    In this paper, we investigate the multi-channel cooperative spectrum sharing in hybrid satellite-terrestrial internet of things (IoT) networks with the auction mechanism, which is designed to reduce the operational expenditure of the satellitebased IoT (S-IoT) network while alleviating the spectrum scarcity issues of terrestrial-based IoT (T-IoT) network. The cluster heads of selected T-IoT networks assist the primary satellite users transmission through cooperative relaying techniques in exchange for spectrum access. We propose an auction-based optimization problem to maximize the sum transmission rate of all primary S-IoT receivers with the appropriate secondary network selection and corresponding radio resource allocation profile by the distributed implementation while meeting the minimum transmission rate of secondary receivers of each TIoT network. Specifically, the one-shot Vickrey-Clarke-Groves (VCG) auction is introduced to obtain the maximum social welfare, where the winner determination problem is transformed into an assignment problem and solved by the Hungarian algorithm. To further reduce the primary satellite network decision complexity, the sequential Vickrey auction is implemented by sequential fashion until all channels are auctioned. Due to incentive compatibility with those two auction mechanisms, the secondary T-IoT cluster yields the true bids of each channel, where both the non-orthogonal multiple access (NOMA) and time division multiple access (TDMA) schemes are implemented in cooperative communication. Finally, simulation results validate the effectiveness and fairness of the proposed auction-based approach as well as the superiority of the NOMA scheme in secondary relays selection. Moreover, the influence of key factors on the performance of the proposed scheme is analyzed in detail

    Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks

    Get PDF
    In cognitive radio networks, there are two categories of networks on different channels: primary networks, which have high-priority access, and secondary networks, which have low-priority access. We develop an auction-based framework that allows networks to bid for primary and secondary access based on their utilities and traffic demands. The bids are used to solve the access allocation problem, which is that of selecting the primary and secondary networks on each channel either to maximize the auctioneer’s revenue or to maximize the social welfare of the bidding networks, while enforcing incentive compatibility. We first consider the case when the bids of a network depend on which other networks it will share channels with. When there is only one secondary network on each channel, we design an optimal polynomial- time algorithm for the access allocation problem based on reduction to a maximum matching problem in weighted graphs. When there can be two or more secondary networks on a channel, we show that the optimal access allocation problem is NP-complete. Next, we consider the case when the bids of a network are independent of which other networks it will share channels with. We design a polynomial-time dynamic programming algorithm to optimally solve the access allocation problem when the number of possible cardinalities of the set of secondary networks on a channel is upper-bounded. Finally, we design a polynomial-time algorithm that approximates the access allocation problem within a factor of 2 when the above upper bound does not exist

    ECONOMIC APPROACHES AND MARKET STRUCTURES FOR TEMPORAL-SPATIAL SPECTRUM SHARING

    Get PDF
    In wireless communication systems, economic approaches can be applied to spectrum sharing and enhance spectrum utilization. In this research, we develop a model where geographic information, including licensed areas of primary users (PUs) and locations of secondary users (SUs), plays an important role in the spectrum sharing system. We consider a multi-price policy and the pricing power of noncooperative PUs in multiple geographic areas. Meanwhile, the value assessment of a channel is price-related and the demand from the SUs is price-elastic. By applying an evolutionary procedure, we prove the existence and uniqueness of the optimal payoff for each PU selling channels without reserve. In the scenario of selling channels with reserve, we predict the channel prices for the PUs leading to the optimal supplies of the PUs and hence the optimal payoffs. To increase spectrum utilization, the scenario of spatial spectrum reuse is considered. We consider maximizing social welfare via on-demand channel allocation, which describes the overall satisfaction of the SUs when we involve the supply and demand relationship. We design a receiver-centric spectrum reuse mechanism, in which the optimal channel allocation that maximizes social welfare can be achieved by the Vickrey-Clarke-Groves (VCG) auction for maximal independent groups (MIGs). We prove that truthful bidding is the optimal strategy for the SUs, even though the SUs do not participate in the VCG auction for MIGs directly. Therefore, the MIGs are bidding truthfully and the requirement for social welfare maximization is satisfied. To further improve user satisfaction, user characteristics that enable heterogeneous channel valuations need to be considered in spatial spectrum reuse. We design a channel transaction mechanism for non-symmetric networks and maximize user satisfaction in consideration of multi-level flexible channel valuations of the SUs. Specifically, we introduce a constrained VCG auction. To facilitate the bid formation, we transform the constrained VCG auction to a step-by-step decision process. Meanwhile, the SUs in a coalition play a coalitional game with transferable utilities. We use the Shapley value to realize fair payoff distribution among the SUs in a coalition

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders
    corecore