2,492 research outputs found

    Optimal replacement in the proportional hazards model and its applications in a product-service system

    Get PDF
    Condition-based maintenance is rapidly gaining favor as a way to prevent the failures of capital-intensive assets and to maintain them in good operating condition with minimum cost. A valuable and increasingly prevalent way to incorporate condition information into risk estimation is by the proportional hazards model (PHM), which explicitly includes both the age and the condition information in the calculation of the hazard function. This dissertation consists of three papers, in which the optimal replacement policies for systems whose deterioration process follows the PHM are developed under different settings; and a joint optimization of the asset and inventory management problem in the context of a product-service system is considered. In the first paper, a continuous time Markov covariate process is assumed to describe the condition of a system that is under periodic monitoring. Although the form of an optimal replacement policy for such a system in the PHM was developed previously, an approximation of the Markov process as constant within inspection intervals led to a counter-intuitive result that less frequent monitoring could yield a replacement policy with lower average cost. Accounting for possible state transitions between inspection epochs removes the approximation and eliminates the cost anomaly. A new recursive procedure to obtain the parameters of the optimal replacement policy is presented. By comparing the replacement and monitoring costs of different monitoring scheme, the value of condition information is evaluated. In the second paper, the optimal replacement policy for systems in the PHM with semi-Markovian covariate process and continuous monitoring is developed. Numerical examples and sensitivity analysis provide some insights about the suitability of a Markov approximation and the impact of the variations in the input parameters on the cost. In applying the optimal replacement policies to a product-service system, where the producers provide the use of the products to customers while retaining ownership, the coupling between the decision making for preventive replacement and the decision making for inventory management is evident. In the third paper, an integrated model is proposed for the preventive maintenance of a fleet of products and the inventory management of a hybrid manufacturing-remanufacturing system in the context of a product-service system. A joint optimization technique is developed to obtain the optimal parameters for the operational policy of the integrated model to minimize the long run average cost per unit time. In addition, the effect of the assumption that the replaced products are not sorted is evaluated

    Supply Chain Management and Management Science: A Successful Marriage

    Get PDF
    The last century has witnessed extant studies on the applications of Management Science (MS) to a diverse set of Supply Chain Management (SCM) issues. This paper provides an overview of the contribution of MS within SCM. A framework is developed in this paper with a sampling of MS contributions to major SCM dimensions. Future research directions are presented

    Ordering and pricing decisions in a closed-loop supply chain with fuzzy demand

    Get PDF
    This paper investigates ordering and pricing decisions in a closed-loop supply chain with fuzzy demand. In this paper, the market demand is characterized as a fuzzy variable and two settings, decentralized channel and centralized channel, are considered. Based on game theory and fuzzy theory, the optimal ordering decision and the optimal recovery prices are given for each setting. The factors that impact the optimal ordering decision and the optimal recovery prices are also found. Some characteristics of the optimal decisions are discussed from the view of management. © 2011 IEEE.published_or_final_versionThe 4th International Joint Conference on Computational Sciences and Optimization (CSO 2011), Yunnan, China, 15-19 April 2011. In Proceedings of the 4th CSO, 2011, p. 1206-121

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Agribusiness supply chain risk management: A review of quantitative decision models

    Get PDF
    Supply chain risk management is a large and growing field of research. However, within this field, mathematical models for agricultural products have received relatively little attention. This is somewhat surprising as risk management is even more important for agricultural supply chains due to challenges associated with seasonality, supply spikes, long supply lead-times, and perishability. This paper carries out a thorough review of the relatively limited literature on quantitative risk management models for agricultural supply chains. Specifically, we identify robustness and resilience as two key techniques for managing risk. Since these terms are not used consistently in the literature, we propose clear definitions and metrics for these terms; we then use these definitions to classify the agricultural supply chain risk management literature. Implications are given for both practice and future research on agricultural supply chain risk management

    Optimal paths in multi-stage stochastic decision networks

    Get PDF
    This paper deals with the search of optimal paths in a multi-stage stochastic decision network as a first application of the deterministic approximation approach proposed by Tadei et al. (2019). In the network, the involved utilities are stage-dependent and contain random oscillations with an unknown probability distribution. The problem is modeled as a sequential choice of nodes in a graph layered into stages, in order to find the optimal path value in a recursive fashion. It is also shown that an optimal path solution can be derived by using a Nested Multinomial Logit model, which represents the choice probability at the different stages. The accuracy and efficiency of the proposed method are experimentally proved on a large set of randomly generated instances. Moreover, insights on the calibration of a critical parameter of the deterministic approximation are also provided

    An Optimal Returned Policy for a Reverse Logistics Inventory Model with Backorders

    Get PDF

    SINGLE VENDOR MULTI BUYER PRODUCTION REMANUFACTURING SYSTEM

    Get PDF

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.
    corecore