199 research outputs found

    Sequential and distributed on-the-fly computation of weak tau-confluence

    Get PDF
    International audienceThe notion of tau-confluence provides a form of partial order reduction of Labelled Transition Systems (LTSs), by enabling to identify the tau-transitions whose execution does not alter the observable behaviour of the system. Several forms of tau-confluence adequate with branching bisimulation were studied in the literature, ranging from strong to weak forms according to the length of tau-transition sequences considered. Weak tau-confluence is more complex to compute than strong tau-confluence, but provides better LTS reductions. In this paper, we aim at devising an efficient detection of weak tau-confluent transitions during an on-the-fly exploration of LTSs. With this purpose, we define and prove new encodings of several weak tau-confluence variants using alternation-free Boolean equation systems (BESs), and we apply efficient local BES resolution algorithms to perform the detection. The resulting reduction module, developed within the CADP toolbox using the generic Open/Cæsar environment for LTS exploration, was tested in both a sequential and a distributed setting on numerous examples of large LTSs underpinning communication protocols and distributed systems. These experiments assessed the efficiency of the reduction and enabled us to identify the best variants of weak tau-confluence that are useful in practice

    Efficient On-the-Fly Computation of Weak Tau-Confluence

    Get PDF
    The notion of tau-confluence provides a form of partial order reduction of Labelled Transition Systems (LTSs), by allowing to identify the tau-transitions whose execution does not alter the observable behaviour of the system. Several forms of tau-confluence adequate with branching bisimulation were studied in the literature, ranging from strong to weak ones according to the length of tau-transition sequences considered. Weak tau-confluence is more complex to compute than strong tau-confluence, but provides better LTS reductions. In this report, we aim at devising an efficient detection of weak tau-confluent transitions during an on-the-fly exploration of LTSs. To this purpose, we define and prove new encodings of several weak tau-confluence variants using alternation-free boolean equation systems (BESs), and we apply efficient local BES resolution algorithms to perform the detection. The resulting reduction module, developed within the CADP toolbox using the generic OPEN/CAESAR environment for LTS exploration, was experimented on numerous examples of large LTSs underlying communication protocols and distributed systems. These experiments assessed the efficiency of the reduction and allowed us to identify the best variants of weak tau-confluence that are useful in practice

    13th international workshop on expressiveness in concurrency

    Get PDF

    Confluence Detection for Transformations of Labelled Transition Systems

    Get PDF
    The development of complex component software systems can be made more manageable by first creating an abstract model and then incrementally adding details. Model transformation is an approach to add such details in a controlled way. In order for model transformation systems to be useful, it is crucial that they are confluent, i.e. that when applied on a given model, they will always produce a unique output model, independent of the order in which rules of the system are applied on the input. In this work, we consider Labelled Transition Systems (LTSs) to reason about the semantics of models, and LTS transformation systems to reason about model transformations. In related work, the problem of confluence detection has been investigated for general graph structures. We observe, however, that confluence can be detected more efficiently in special cases where the graphs have particular structural properties. In this paper, we present a number of observations to detect confluence of LTS transformation systems, and propose both a new confluence detection algorithm and a conflict resolution algorithm based on them.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators

    On-the-fly confluence detection for statistical model checking (extended version)

    Get PDF
    Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the underlying model is a stochastic process. In verification, however, models are usually variations of nondeterministic transition systems. The notion of confluence allows the reduction of such transition systems in classical model checking by removing spurious nondeterministic choices. In this paper, we show that confluence can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of statistical model checking to a subclass of Markov decision processes. In contrast to previous approaches that use partial order reduction, the confluence-based technique can handle additional kinds of nondeterminism. In particular, it is not restricted to interleavings. We evaluate our approach, which is implemented as part of the modes simulator for the Modest modelling language, on a set of examples that highlight its strengths and limitations and show the improvements compared to the partial order-based method

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators.Formale Methoden erlauben die Entwicklung verlässlicher und performanter sicherheits- oder zeitkritischer Systeme, indem auf mathematisch präzisen Modellen relevante Eigenschaften wie Sicherheits- oder Performance-Garantien automatisch verifiziert werden. In dieser Dissertation stellen wir Methoden vor, mit denen die Anwendbarkeit der klassischen und statistischen Modellprüfung (model checking) zur Verifikation von Erreichbarkeits- und Nutzenseigenschaften auf kompositionellen Verhaltensmodellen, die quantitative Aspekte wie zufallsbasierte Entscheidungen und Echtzeitverhalten enthalten, erweitert wird. Wir zeigen zwei Methoden auf, die eine korrekte statistische Modellprüfung von Markov-Entscheidungsprozessen erlauben. Wir untersuchen den Zusammenhang zwischen zwei Definitionen des Modells des probabilistischen Zeitautomaten sowie mögliche Wege, die statistische Modellprüfung auf diese Art Modelle anzuwenden. Stochastische Zeitautomaten erlauben nichtdeterministische Entscheidungen sowie nichtdeterministische und stochastische Wartezeiten; wir stellen den ersten Algorithmus für die klassische Modellprüfung dieser Automaten vor. Alle Techniken, die wir in dieser Dissertation behandeln, sind als Teil des Modest Toolsets, welches die Erstellung und Verifikation von Modellen mittels der formalen Modellierungssprache Modest erlaubt, implementiert. Wir verwenden diese Sprache und Tools, um neuartige verteilte Steuerungsalgorithmen für Photovoltaikanlagen zu untersuchen

    Confluence for process verification

    Get PDF

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators.Formale Methoden erlauben die Entwicklung verlässlicher und performanter sicherheits- oder zeitkritischer Systeme, indem auf mathematisch präzisen Modellen relevante Eigenschaften wie Sicherheits- oder Performance-Garantien automatisch verifiziert werden. In dieser Dissertation stellen wir Methoden vor, mit denen die Anwendbarkeit der klassischen und statistischen Modellprüfung (model checking) zur Verifikation von Erreichbarkeits- und Nutzenseigenschaften auf kompositionellen Verhaltensmodellen, die quantitative Aspekte wie zufallsbasierte Entscheidungen und Echtzeitverhalten enthalten, erweitert wird. Wir zeigen zwei Methoden auf, die eine korrekte statistische Modellprüfung von Markov-Entscheidungsprozessen erlauben. Wir untersuchen den Zusammenhang zwischen zwei Definitionen des Modells des probabilistischen Zeitautomaten sowie mögliche Wege, die statistische Modellprüfung auf diese Art Modelle anzuwenden. Stochastische Zeitautomaten erlauben nichtdeterministische Entscheidungen sowie nichtdeterministische und stochastische Wartezeiten; wir stellen den ersten Algorithmus für die klassische Modellprüfung dieser Automaten vor. Alle Techniken, die wir in dieser Dissertation behandeln, sind als Teil des Modest Toolsets, welches die Erstellung und Verifikation von Modellen mittels der formalen Modellierungssprache Modest erlaubt, implementiert. Wir verwenden diese Sprache und Tools, um neuartige verteilte Steuerungsalgorithmen für Photovoltaikanlagen zu untersuchen
    • …
    corecore