131 research outputs found

    Sequential Recommendation with Relation-Aware Kernelized Self-Attention

    Full text link
    Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with augmentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.Comment: 8 pages, 5 figures, AAA

    Contribution to Graph-based Multi-view Clustering: Algorithms and Applications

    Get PDF
    185 p.In this thesis, we study unsupervised learning, specifically, clustering methods for dividing data into meaningful groups. One major challenge is how to find an efficient algorithm with low computational complexity to deal with different types and sizes of datasets.For this purpose, we propose two approaches. The first approach is named "Multi-view Clustering via Kernelized Graph and Nonnegative Embedding" (MKGNE), and the second approach is called "Multi-view Clustering via Consensus Graph Learning and Nonnegative Embedding" (MVCGE). These two approaches jointly solve four tasks. They jointly estimate the unified similarity matrix over all views using the kernel tricks, the unified spectral projection of the data, the clusterindicator matrix, and the weight of each view without additional parameters. With these two approaches, there is no need for any postprocessing such as k-means clustering.In a further study, we propose a method named "Multi-view Spectral Clustering via Constrained Nonnegative Embedding" (CNESE). This method can overcome the drawbacks of the spectral clustering approaches, since they only provide a nonlinear projection of the data, on which an additional step of clustering is required. This can degrade the quality of the final clustering due to various factors such as the initialization process or outliers. Overcoming these drawbacks can be done by introducing a nonnegative embedding matrix which gives the final clustering assignment. In addition, some constraints are added to the targeted matrix to enhance the clustering performance.In accordance with the above methods, a new method called "Multi-view Spectral Clustering with a self-taught Robust Graph Learning" (MCSRGL) has been developed. Different from other approaches, this method integrates two main paradigms into the one-step multi-view clustering model. First, we construct an additional graph by using the cluster label space in addition to the graphs associated with the data space. Second, a smoothness constraint is exploited to constrain the cluster-label matrix and make it more consistent with the data views and the label view.Moreover, we propose two unified frameworks for multi-view clustering in Chapter 9. In these frameworks, we attempt to determine a view-based graphs, the consensus graph, the consensus spectral representation, and the soft clustering assignments. These methods retain the main advantages of the aforementioned methods and integrate the concepts of consensus and unified matrices. By using the unified matrices, we enforce the matrices of different views to be similar, and thus the problem of noise and inconsistency between different views will be reduced.Extensive experiments were conducted on several public datasets with different types and sizes, varying from face image datasets, to document datasets, handwritten datasets, and synthetics datasets. We provide several analyses of the proposed algorithms, including ablation studies, hyper-parameter sensitivity analyses, and computational costs. The experimental results show that the developed algorithms through this thesis are relevant and outperform several competing methods

    Smartphone App Usage Analysis : Datasets, Methods, and Applications

    Get PDF
    As smartphones have become indispensable personal devices, the number of smartphone users has increased dramatically over the last decade. These personal devices, which are supported by a variety of smartphone apps, allow people to access Internet services in a convenient and ubiquitous manner. App developers and service providers can collect fine-grained app usage traces, revealing connections between users, apps, and smartphones. We present a comprehensive review of the most recent research on smartphone app usage analysis in this survey. Our survey summarizes advanced technologies and key patterns in smartphone app usage behaviors, all of which have significant implications for all relevant stakeholders, including academia and industry. We begin by describing four data collection methods: surveys, monitoring apps, network operators, and app stores, as well as nine publicly available app usage datasets. We then systematically summarize the related studies of app usage analysis in three domains: app domain, user domain, and smartphone domain. We make a detailed taxonomy of the problem studied, the datasets used, the methods used, and the significant results obtained in each domain. Finally, we discuss future directions in this exciting field by highlighting research challenges.Peer reviewe

    User Acquisition and Engagement in Digital News Media

    Get PDF
    Generating revenue has been a major issue for the news industry and journalism over the past decade. In fact, vast availability of free online news sources causes online news media agencies to face user acquisition and engagement as pressing issues more than before. Although digital news media agencies are seeking sustainable relationships with their users, their current business models do not satisfy this demand. As a matter of fact, they need to understand and predict how much an article can engage a reader as a crucial step in attracting readers, and then maximize the engagement using some strategies. Moreover, news media companies need effective algorithmic tools to identify users who are prone to subscription. Last but not least, online news agencies need to make smarter decisions in the way that they deliver articles to users to maximize the potential benefits. In this dissertation, we take the first steps towards achieving these goals and investigate these challenges from data mining /machine learning perspectives. First, we investigate the problem of understanding and predicting article engagement in terms of dwell time as one of the most important factors in digital news media. In particular, we design data exploratory models studying the textual elements (e.g., events, emotions) involved in article stories, and find their relationships with the engagement patterns. In the prediction task, we design a framework to predict the article dwell time based on a deep neural network architecture which exploits the interactions among important elements (i.e., augmented features) in the article content as well as the neural representation of the content to achieve the better performance. In the second part of the dissertation, we address the problem of identifying valuable visitors who are likely to subscribe in the future. We suggest that the decision for subscription is not a sudden, instantaneous action, but it is the informed decision based on positive experience with the newspaper. As such, we propose effective engagement measures and show that they are effective in building the predictive model for subscription. We design a model that predicts not only the potential subscribers but also the time that a user would subscribe. In the last part of this thesis, we consider the paywall problem in online newspapers. The traditional paywall method offers a non-subscribed reader a fixed number of free articles in a period of time (e.g., a month), and then directs the user to the subscription page for further reading. We argue that there is no direct relationship between the number of paywalls presented to readers and the number of subscriptions, and that this artificial barrier, if not used well, may disengage potential subscribers and thus may not well serve its purpose of increasing revenue. We propose an adaptive paywall mechanism to balance the benefit of showing an article against that of displaying the paywall (i.e., terminating the session). We first define the notion of cost and utility that are used to define an objective function for optimal paywall decision making. Then, we model the problem as a stochastic sequential decision process. Finally, we propose an efficient policy function for paywall decision making. All the proposed models are evaluated on real datasets from The Globe and Mail which is a major newspaper in Canada. However, the proposed techniques are not limited to any particular dataset or strict requirement. Alternatively, they are designed based on the datasets and settings which are available and common to most of newspapers. Therefore, the models are general and can be applied by any online newspaper to improve user engagement and acquisition

    Bandits on graphs and structures

    Get PDF
    We investigate the structural properties of certain sequential decision-making problems with limited feedback (bandits) in order to bring the known algorithmic solutions closer to a practical use. In the first part, we put a special emphasis on structures that can be represented as graphs on actions, in the second part we study the large action spaces that can be of exponential size in the number of base actions or even infinite. We show how to take advantage of structures over the actions and (provably) learn faster

    Some Contribution of Statistical Techniques in Big Data: A Review

    Get PDF
    Big Data is a popular topic in research work. Everyone is talking about big data, and it is believed that science, business, industry, government, society etc. will undergo a through change with the impact of big data.Big data is used to refer to very huge data set having large, more complex, hidden pattern, structured and unstructured nature of data with the difficulties to collect, storage, analysing for process or result. So proper advanced techniques to use to gain knowledge about big data. In big data research big challenge is created in storage, process, search, sharing, transfer, analysis and visualizing. To deeply discuss on introduction of big data, issue, management and all used big data techniques. Also in this paper present a review of various advanced statistical techniques to handling the key application of big data have large data set. These advanced techniques handle the structure as well as unstructured big data in different area
    • …
    corecore