453 research outputs found

    Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models

    Full text link
    This paper presents a new Markov chain Monte Carlo method to sample from the posterior distribution of conjugate mixture models. This algorithm relies on a flexible split-merge procedure built using the particle Gibbs sampler. Contrary to available split-merge procedures, the resulting so-called Particle Gibbs Split-Merge sampler does not require the computation of a complex acceptance ratio, is simple to implement using existing sequential Monte Carlo libraries and can be parallelized. We investigate its performance experimentally on synthetic problems as well as on geolocation and cancer genomics data. In all these examples, the particle Gibbs split-merge sampler outperforms state-of-the-art split-merge methods by up to an order of magnitude for a fixed computational complexity

    Distance Dependent Chinese Restaurant Processes

    Full text link
    We develop the distance dependent Chinese restaurant process (CRP), a flexible class of distributions over partitions that allows for non-exchangeability. This class can be used to model many kinds of dependencies between data in infinite clustering models, including dependencies across time or space. We examine the properties of the distance dependent CRP, discuss its connections to Bayesian nonparametric mixture models, and derive a Gibbs sampler for both observed and mixture settings. We study its performance with three text corpora. We show that relaxing the assumption of exchangeability with distance dependent CRPs can provide a better fit to sequential data. We also show its alternative formulation of the traditional CRP leads to a faster-mixing Gibbs sampling algorithm than the one based on the original formulation

    Sparse covariance estimation in heterogeneous samples

    Full text link
    Standard Gaussian graphical models (GGMs) implicitly assume that the conditional independence among variables is common to all observations in the sample. However, in practice, observations are usually collected form heterogeneous populations where such assumption is not satisfied, leading in turn to nonlinear relationships among variables. To tackle these problems we explore mixtures of GGMs; in particular, we consider both infinite mixture models of GGMs and infinite hidden Markov models with GGM emission distributions. Such models allow us to divide a heterogeneous population into homogenous groups, with each cluster having its own conditional independence structure. The main advantage of considering infinite mixtures is that they allow us easily to estimate the number of number of subpopulations in the sample. As an illustration, we study the trends in exchange rate fluctuations in the pre-Euro era. This example demonstrates that the models are very flexible while providing extremely interesting interesting insights into real-life applications
    • …
    corecore