3,658 research outputs found

    Learning a Policy for Opportunistic Active Learning

    Full text link
    Active learning identifies data points to label that are expected to be the most useful in improving a supervised model. Opportunistic active learning incorporates active learning into interactive tasks that constrain possible queries during interactions. Prior work has shown that opportunistic active learning can be used to improve grounding of natural language descriptions in an interactive object retrieval task. In this work, we use reinforcement learning for such an object retrieval task, to learn a policy that effectively trades off task completion with model improvement that would benefit future tasks.Comment: EMNLP 2018 Camera Read

    Machine learning on a budget

    Full text link
    Thesis (Ph.D.)--Boston UniversityIn a typical discriminative learning setting, a set of labeled training examples is given, and the goal is to learn a decision rule that accurately classifies (or labels) unseen test examples. Much of machine learning research has focused on improving accuracy, but more recently costs of learning and decision making are becoming more important. Such costs arise both during training and testing. Labeling data for training is often an expensive process. During testing, acquiring or processing measurements for every decision is also costly. This work deals with two problems: how to reduce the amount of labeled data during training, and how to minimize measurements cost in making decisions during testing, while maintaining system accuracy. The first part falls into an area known as active learning. It deals with the problem of selecting a small subset of examples to label, from a pool of unlabeled data, for training a good classifier. This problem is relevant in many applications where a large collection of unlabeled data is readily available but to label an instance requires using an expensive expert (a radiologist annotating a medical image). We study active learning in the boosting framework. We develop a practical algorithm that labels examples to maximally reduce the space of feasible classifiers. We show that, under certain assumptions, our strategy achieves the generalization error performance of a system trained on the entire data set while only selecting logarithmically many samples to label. In the second part, we study sequential classifiers under budget constraints. In many systems, such as medical diagnosis and homeland security, sensors have varying acquisition costs, and these costs account for delay, throughput or monetary value. While some decisions require all measurements, it is often unnecessary to use every modality to classify every example. So the problem is to learn a system that, for every decision, sequentially selects sensors to meet a measurement budget while minimizing classification error. Initially, we study the case where the sensor order in which measurement are acquired is given. For every instance, our system has to decide whether to seek more measurements from the next sensor or to terminate by classifying based on the available information. We use Bayesian analysis of this problem to construct a novel multi-stage empirical risk objective and directly learn sequential decision functions from training data. We provide practical algorithms for binary and multi-class settings and derive generalization error guarantees. We compare our approach to alternative strategies on real world data. In the last section, we explore a decision system when the order of sensors is no longer fixed. We investigate how to combine ideas from reinforcement and imitation learning with empirical risk minimization to learn a dynamic sensor selection policy

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback

    Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

    Full text link
    This paper studies the generalization performance of multi-class classification algorithms, for which we obtain, for the first time, a data-dependent generalization error bound with a logarithmic dependence on the class size, substantially improving the state-of-the-art linear dependence in the existing data-dependent generalization analysis. The theoretical analysis motivates us to introduce a new multi-class classification machine based on â„“p\ell_p-norm regularization, where the parameter pp controls the complexity of the corresponding bounds. We derive an efficient optimization algorithm based on Fenchel duality theory. Benchmarks on several real-world datasets show that the proposed algorithm can achieve significant accuracy gains over the state of the art
    • …
    corecore