7,806 research outputs found

    Word Recognition with Deep Conditional Random Fields

    Full text link
    Recognition of handwritten words continues to be an important problem in document analysis and recognition. Existing approaches extract hand-engineered features from word images--which can perform poorly with new data sets. Recently, deep learning has attracted great attention because of the ability to learn features from raw data. Moreover they have yielded state-of-the-art results in classification tasks including character recognition and scene recognition. On the other hand, word recognition is a sequential problem where we need to model the correlation between characters. In this paper, we propose using deep Conditional Random Fields (deep CRFs) for word recognition. Basically, we combine CRFs with deep learning, in which deep features are learned and sequences are labeled in a unified framework. We pre-train the deep structure with stacked restricted Boltzmann machines (RBMs) for feature learning and optimize the entire network with an online learning algorithm. The proposed model was evaluated on two datasets, and seen to perform significantly better than competitive baseline models. The source code is available at https://github.com/ganggit/deepCRFs.Comment: 5 pages, published in ICIP 2016. arXiv admin note: substantial text overlap with arXiv:1412.339

    Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs

    Get PDF
    In this work we propose a structured prediction technique that combines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a) our structured prediction task has a unique global optimum that is obtained exactly from the solution of a linear system (b) the gradients of our model parameters are analytically computed using closed form expressions, in contrast to the memory-demanding contemporary deep structured prediction approaches that rely on back-propagation-through-time, (c) our pairwise terms do not have to be simple hand-crafted expressions, as in the line of works building on the DenseCRF, but can rather be `discovered' from data through deep architectures, and (d) out system can trained in an end-to-end manner. Building on standard tools from numerical analysis we develop very efficient algorithms for inference and learning, as well as a customized technique adapted to the semantic segmentation task. This efficiency allows us to explore more sophisticated architectures for structured prediction in deep learning: we introduce multi-resolution architectures to couple information across scales in a joint optimization framework, yielding systematic improvements. We demonstrate the utility of our approach on the challenging VOC PASCAL 2012 image segmentation benchmark, showing substantial improvements over strong baselines. We make all of our code and experiments available at {https://github.com/siddharthachandra/gcrf}Comment: Our code is available at https://github.com/siddharthachandra/gcr

    Dialogue Act Recognition via CRF-Attentive Structured Network

    Full text link
    Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap.Comment: 10 pages, 4figure

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines
    • …
    corecore