716 research outputs found

    Clone Node Detection in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are often deployed in unfavourable situations where an assailant can physically capture some of the nodes, first can reprogram, and then, can replicate them in a large number of clones, easily taking control over the network. This replication node is also called as Clone node. The clone node or replicated node behave as a genuine node. It can damage the network. In node replication attack detecting the clone node important issue in Wireless Sensor Networks. A few distributed solutions have been recently proposed, but they are not satisfactory. First, they are intensity and memory demanding: A serious drawback for any protocol to be used in the WSN- resource constrained environment. In this project first investigate the selection criteria of clone detection schemes with regard to device types, detection methodologies, deployment strategies, and detection ranges. Further, they are vulnerable to the specific assailant models introduced in this paper. In this scenario, a particularly dangerous attack is the replica attack, in which the assailant takes the secret keying materials from a compromised node, generates a large number of assailant-controlled replicas that share the node’s keying materials and ID, and then spreads these replicas throughout the network. With a single captured node, the assailant can create as many replica nodes as he has the hardware to generate.. The replica nodes are controlled by the assailant, but have keying materials that allow them to seem like authorized participants in the network. Our implementation specifies, user will specify its ID, which means client id, secret key will be create, and then include the port number. The witness node will verify the internally bounded user Id and secret key. The witness node means original node. If the verification is success, the information collecting to the packets that packets are send to the destination

    Distributed Detection of Node Capture Attacks in Wireless Sensor Networks

    Get PDF

    Hybrid Multi-Level Detection and Mitigation of Clone Attacks in Mobile Wireless Sensor Network (MWSN).

    Full text link
    Wireless sensor networks (WSNs) are often deployed in hostile environments, where an adversary can physically capture some of the sensor nodes. The adversary collects all the nodes' important credentials and subsequently replicate the nodes, which may expose the network to a number of other security attacks, and eventually compromise the entire network. This harmful attack where a single or more nodes illegitimately claims an identity as replicas is known as the node replication attack. The problem of node replication attack can be further aggravated due to the mobile nature in WSN. In this paper, we propose an extended version of multi-level replica detection technique built on Danger Theory (DT), which utilizes a hybrid approach (centralized and distributed) to shield the mobile wireless sensor networks (MWSNs) from clone attacks. The danger theory concept depends on a multi-level of detections; first stage (highlights the danger zone (DZ) by checking the abnormal behavior of mobile nodes), second stage (battery check and random number) and third stage (inform about replica to other networks). The DT method performance is highlighted through security parameters such as false negative, energy, detection time, communication overhead and delay in detection. The proposed approach also demonstrates that the hybrid DT method is capable and successful in detecting and mitigating any malicious activities initiated by the replica. Nowadays, crimes are vastly increasing and it is crucial to modify the systems accordingly. Indeed, it is understood that the communication needs to be secured by keen observation at each level of detection. The simulation results show that the proposed approach overcomes the weaknesses of the previous and existing centralized and distributed approaches and enhances the performance of MWSN in terms of communication and memory overhead

    Node-Replication Attack Detection in Vehicular Ad-hoc Networks based on Automatic Approach

    Get PDF
    Recent advances in smart cities applications enforce security threads such as node replication attacks. Such attack is take place when the attacker plants a replicated network node within the network. Vehicular Ad hoc networks are connecting sensors that have limited resources and required the response time to be as low as possible. In this type networks, traditional detection algorithms of node replication attacks are not efficient. In this paper, we propose an initial idea to apply a newly adapted statistical methodology that can detect node replication attacks with high performance as compared to state-of-the-art techniques. We provide a sufficient description of this methodology and a road-map for testing and experiment its performance

    Dynamic Bayesian Collective Awareness Models for a Network of Ego-Things

    Get PDF
    A novel approach is proposed for multimodal collective awareness (CA) of multiple networked intelligent agents. Each agent is here considered as an Internet-of-Things (IoT) node equipped with machine learning capabilities; CA aims to provide the network with updated causal knowledge of the state of execution of actions of each node performing a joint task, with particular attention to anomalies that can arise. Data-driven dynamic Bayesian models learned from multisensory data recorded during the normal realization of a joint task (agent network experience) are used for distributed state estimation of agents and detection of abnormalities. A set of switching dynamic Bayesian network (DBN) models collectively learned in a training phase, each related to particular sensorial modality, is used to allow each agent in the network to perform synchronous estimation of possible abnormalities occurring when a new task of the same type is jointly performed. Collective DBN (CDBN) learning is performed by unsupervised clustering of generalized errors (GEs) obtained from a starting generalized model. A growing neural gas (GNG) algorithm is used as a basis to learn the discrete switching variables at the semantic level. Conditional probabilities linking nodes in the CDBN models are estimated using obtained clusters. CDBN models are associated with a Bayesian inference method, namely, distributed Markov jump particle filter (D-MJPF), employed for joint state estimation and abnormality detection. The effects of networking protocols and of communications in the estimation of state and abnormalities are analyzed. Performance is evaluated by using a small network of two autonomous vehicles performing joint navigation tasks in a controlled environment. In the proposed method, first the sharing of observations is considered in ideal condition, and then the effects of a wireless communication channel have been analyzed for the collective abnormality estimation of the agents. Rician wireless channel and the usage of two protocols (i.e., IEEE 802.11p and IEEE 802.15.4) along with different channel conditions are considered as well

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    • …
    corecore