8,276 research outputs found

    Clandestine Mine Countermeasures Optimization for Autonomy and Risk Assessment

    Get PDF
    NPS NRP Technical ReportThe PRC and Russia are the greatest miners in the world and are prepared to employ mines to tilt the Great Power Competition (GPC) in their favor. Mines are inexpensive, easily deployed, and put Distributed Maritime Operations (DMO) at high-risk. Countering mines within acceptable risk levels and mission timelines is required to support DMO operational requirements. Although the development and integration of autonomous vehicles should improve DMO, research and development of new tools for optimizing distributed search effort are required to minimize risk to the force. These tools must consider the constraints placed on mine countermeasures (MCM) by the challenges of GPC. Today's MCM systems, for example, rely on surface and airborne assets, with associated force protection burdens required to establish and maintain a permissive environment. In the future, naval forces must be prepared to operate in contested environments where overt operations are denied and supporting technologies (GPS, communications, etc.) are severely limited. Autonomous underwater vehicles (AUVs) have potential to conduct clandestine MCM operations, but new approaches for conducting collaborative search with multiple AUVs are needed to fully realize their potential. Research is required to identify and assess new methods for conducting entirely clandestine MCM.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed
    corecore