94 research outputs found

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees

    Planning as Tabled Logic Programming

    Get PDF
    This paper describes Picat's planner, its implementation, and planning models for several domains used in International Planning Competition (IPC) 2014. Picat's planner is implemented by use of tabling. During search, every state encountered is tabled, and tabled states are used to effectively perform resource-bounded search. In Picat, structured data can be used to avoid enumerating all possible permutations of objects, and term sharing is used to avoid duplication of common state data. This paper presents several modeling techniques through the example models, ranging from designing state representations to facilitate data sharing and symmetry breaking, encoding actions with operations for efficient precondition checking and state updating, to incorporating domain knowledge and heuristics. Broadly, this paper demonstrates the effectiveness of tabled logic programming for planning, and argues the importance of modeling despite recent significant progress in domain-independent PDDL planners.Comment: 27 pages in TPLP 201

    Approaches for action sequence representation in robotics: a review

    Get PDF
    Robust representation of actions and its sequences for complex robotic tasks would transform robot’s understand- ing to execute robotic tasks efficiently. The challenge is to under- stand action sequences for highly unstructured environments and to represent and construct action and action sequences. In this manuscript, we present a review of literature dealing with representation of action and action sequences for robot task planning and execution. The methodological review was conducted using Google Scholar and IEEE Xplore, searching the specific keywords. This manuscript gives an overview of current approaches for representing action sequences in robotics. We propose a classification of different methodologies used for action sequences representation and describe the most important aspects of the reviewed publications. This review allows the reader to understand several options that do exist in the research community, to represent and deploy such action representations in real robots

    Reasoning about Communicating Agents in the Semantic Web

    Full text link
    Abstract. In this article we interpret the Semantic Web and Web Service issues in the framework of multi-agent interoperating systems. We will advocate the application of results achieved in the research area of reasoning about actions and change by showing scenarios and techniques that could be applied.

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF
    • …
    corecore