25 research outputs found

    Deductive Systems in Traditional and Modern Logic

    Get PDF
    The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic

    10061 Abstracts Collection -- Circuits, Logic, and Games

    Get PDF
    From 07/02/10 to 12/02/10, the Dagstuhl Seminar 10061 ``Circuits, Logic, and Games \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Remarks on Inheritance Systems

    Full text link
    We try a conceptual analysis of inheritance diagrams, first in abstract terms, and then compare to "normality" and the "small/big sets" of preferential and related reasoning. The main ideas are about nodes as truth values and information sources, truth comparison by paths, accessibility or relevance of information by paths, relative normality, and prototypical reasoning

    Paradox, arithmetic and nontransitive logic

    Get PDF
    This dissertation is concerned with motivating, developing and defending nontransitive theories of truth over Peano Arithmetic. Its main goal is to show that such a nontransitive theory of truth is the only theory capable of maintaining all functional roles of the truth predicate: the substitutional and the quantificational roles. By the substitutional roles we mean that the theory ought to prove p iff it proves that p is true and that it proves all instances of the T-schema p iff 'p' is true. A theory fulfils the quantificational role if its axioms governing the truth-predicate are strong enough to mimick as much second-order quantification as possible. Where the literature on classical theories of truth has focused primarily on the fulfilment of the quantificational role, the nonclassical literature is very much obsessed with the substitutional roles. The problem of having a theory of truth fulfilling both the substitutional and quantificational (or already just the full substitutional) role are paradoxes of truth such as the Liar. Where the Liar is a sentence which informally says about itself that it is not true, we can show that it is both true and not true, which typically allows us to conclude any formula whatsoever. This problem is overcome in the current approach by blocking the use of transitivity principles under certain conditions

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    Kiel Declarative Programming Days 2013

    Get PDF
    This report contains the papers presented at the Kiel Declarative Programming Days 2013, held in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013 unified the following events: * 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2013) * 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP 2013) * 27th Workshop on Logic Programming (WLP 2013) All these events are centered around declarative programming, an advanced paradigm for the modeling and solving of complex problems. These specification and implementation methods attracted increasing attention over the last decades, e.g., in the domains of databases and natural language processing, for modeling and processing combinatorial problems, and for high-level programming of complex, in particular, knowledge-based systems
    corecore