460 research outputs found

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’

    Modalities as interactions between the classical and the intuitionistic logics

    Get PDF
    We give an equivalent formulation of topological algebras, interpreting S4, as boolean algebras equipped with intuitionistic negation. The intuitionistic substructure—Heyting algebra—of such an algebra can be then seen as an “epistemic subuniverse”, and modalities arise from the interaction between the intuitionistic and classical negations or, we might perhaps say, between the epistemic and the ontological aspects: they are not relations between arbitrary alternatives but between intuitionistic substructures and one common world governed by the classical (propositional) logic. As an example of the generality of the obtained view, we apply it also to S5. We give a sound, complete and decidable sequent calculus, extending a classical system with the rules for handling the intuitionistic negation, in which one can prove all classical, intuitionistic and S4 valid sequents

    Positive Logic with Adjoint Modalities: Proof Theory, Semantics and Reasoning about Information

    Get PDF
    We consider a simple modal logic whose non-modal part has conjunction and disjunction as connectives and whose modalities come in adjoint pairs, but are not in general closure operators. Despite absence of negation and implication, and of axioms corresponding to the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous work by Baltag, Coecke and the first author, for encoding and reasoning about information and misinformation in multi-agent systems. For such a logic we present an algebraic semantics, using lattices with agent-indexed families of adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on sequents, in the style of "nested" or "tree-sequent" calculi; cut-admissibility is shown by constructive syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy children scenario.Comment: This paper is the full version of the article that is to appear in the ENTCS proceedings of the 25th conference on the Mathematical Foundations of Programming Semantics (MFPS), April 2009, University of Oxfor

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples
    • …
    corecore