57,125 research outputs found

    Bootstrapping Multilingual Intent Models via Machine Translation for Dialog Automation

    Get PDF
    With the resurgence of chat-based dialog systems in consumer and enterprise applications, there has been much success in developing data-driven and rule-based natural language models to understand human intent. Since these models require large amounts of data and in-domain knowledge, expanding an equivalent service into new markets is disrupted by language barriers that inhibit dialog automation. This paper presents a user study to evaluate the utility of out-of-the-box machine translation technology to (1) rapidly bootstrap multilingual spoken dialog systems and (2) enable existing human analysts to understand foreign language utterances. We additionally evaluate the utility of machine translation in human assisted environments, where a portion of the traffic is processed by analysts. In English->Spanish experiments, we observe a high potential for dialog automation, as well as the potential for human analysts to process foreign language utterances with high accuracy.Comment: 6 pages, 3 figures, accepted for publication at the 2018 European Association for Machine Translation Conference (EAMT 2018

    Linguistic unit discovery from multi-modal inputs in unwritten languages: Summary of the "Speaking Rosetta" JSALT 2017 Workshop

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding the discovery of linguistic units (subwords and words) in a language without orthography. We study the replacement of orthographic transcriptions by images and/or translated text in a well-resourced language to help unsupervised discovery from raw speech.Comment: Accepted to ICASSP 201

    Fine-tuning on Clean Data for End-to-End Speech Translation: FBK @ IWSLT 2018

    Get PDF
    This paper describes FBK's submission to the end-to-end English-German speech translation task at IWSLT 2018. Our system relies on a state-of-the-art model based on LSTMs and CNNs, where the CNNs are used to reduce the temporal dimension of the audio input, which is in general much higher than machine translation input. Our model was trained only on the audio-to-text parallel data released for the task, and fine-tuned on cleaned subsets of the original training corpus. The addition of weight normalization and label smoothing improved the baseline system by 1.0 BLEU point on our validation set. The final submission also featured checkpoint averaging within a training run and ensemble decoding of models trained during multiple runs. On test data, our best single model obtained a BLEU score of 9.7, while the ensemble obtained a BLEU score of 10.24.Comment: 6 pages, 2 figures, system description at the 15th International Workshop on Spoken Language Translation (IWSLT) 201
    corecore