1,329 research outputs found

    Semantic segmentation priors for object discovery

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Reliable object discovery in realistic indoor scenes is a necessity for many computer vision and service robot applications. In these scenes, semantic segmentation methods have made huge advances in recent years. Such methods can provide useful prior information for object discovery by removing false positives and by delineating object boundaries. We propose a novel method that combines bottom-up object discovery and semantic priors for producing generic object candidates in RGB-D images. We use a deep learning method for semantic segmentation to classify colour and depth superpixels into meaningful categories. Separately for each category, we use saliency to estimate the location and scale of objects, and superpixels to find their precise boundaries. Finally, object candidates of all categories are combined and ranked. We evaluate our approach on the NYU Depth V2 dataset and show that we outperform other state-of-the-art object discovery methods in terms of recall.Peer ReviewedPostprint (author's final draft

    Track, then Decide: Category-Agnostic Vision-based Multi-Object Tracking

    Full text link
    The most common paradigm for vision-based multi-object tracking is tracking-by-detection, due to the availability of reliable detectors for several important object categories such as cars and pedestrians. However, future mobile systems will need a capability to cope with rich human-made environments, in which obtaining detectors for every possible object category would be infeasible. In this paper, we propose a model-free multi-object tracking approach that uses a category-agnostic image segmentation method to track objects. We present an efficient segmentation mask-based tracker which associates pixel-precise masks reported by the segmentation. Our approach can utilize semantic information whenever it is available for classifying objects at the track level, while retaining the capability to track generic unknown objects in the absence of such information. We demonstrate experimentally that our approach achieves performance comparable to state-of-the-art tracking-by-detection methods for popular object categories such as cars and pedestrians. Additionally, we show that the proposed method can discover and robustly track a large variety of other objects.Comment: ICRA'18 submissio
    corecore