789 research outputs found

    RRR-robot : instruction manual

    Get PDF

    RRR-robot : instruction manual

    Get PDF

    FPGA BASED IMPLEMENTATION OF A POSITION ESTIMATOR FOR CONTROLLING A SWITCHED RELUCTANCE MOTOR

    Get PDF
    Rotor Position information is essential in the operation of the Switched Reluctance Motor (SRM) for properly controlling its phase currents. This thesis uses Field Programmable Gate Array (FPGA) technology to implement a method to estimate the SRMs rotor position using the inverse inductance value of the SRMs phases. The estimated rotor position is given as input to the Commutator circuit, also implemented in the FPGA, to determine when torque-producing currents should be input in the SRM phase windings. The Estimator and Commutator design is coded using Verilog HDL and is simulated using Xilinx tools. This circuit is implemented on a Xilinx Virtex XCV800 FPGA system. The experimentally generated output is validated by comparing it with simulation results from a Simulink model of the Estimator. The performance of the FPGA based SRM rotor position estimator in terms of calculation time is compared to a digital signal processor (DSP) implementation of the same position estimator algorithm. It is found that the FPGA rotor position Estimator with a 5MHz clock can update its rotor position estimate every 7s compared to an update time of 50s for a TMS320C6701-150 DSP implementation using a commercial DSP board. This is a greater than 7 to one reduction in the update time

    Power bus management techniques for space missions in low earth orbit

    Get PDF
    In space vehicles, the typical configurations for the Solar Array Power Regulators in charge of managing power transfer from the solar array to the power bus are quite different from the corresponding devices in use for terrestrial applications. A thorough analysis is reported for the most popular approaches, namely Sequential Switching Shunt Regulation and parallel-input Pulse Width Modulated converters with Maximum Power Point Tracking. Their performance is compared with reference to a typical mission in low Earth orbit, highlighting the respective strengths and weaknesses. A novel solar array managing technique, the Sequential Maximum Power Tracking, is also introduced in the trade-off and was demonstrated able to boost energy harvesting, especially in the presence of mismatching in the solar array. It also can achieve top levels of reliability using a rather simple control hardware. Its operation was verified both by a Matlab–Simulink model and by an experimental breadboard

    Modelling machines for simulation-based control design

    Get PDF

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    The Miniaturization of the AFIT Random Noise Radar

    Get PDF
    Advances in technology and signal processing techniques have opened the door to using an UWB random noise waveform for radar imaging. This unique, low probability of intercept waveform has piqued the interest of the U.S. DoD as well as law enforcement and intelligence agencies alike. While AFIT\u27s noise radar has made significant progress, the current architecture needs to be redesigned to meet the space constraints and power limitations of an aerial platform. This research effort is AFIT\u27s first attempt at RNR miniaturization and centers on two primary objectives: 1) identifying a signal processor that is compact, energy efficient, and capable of performing the demanding signal processing routines and 2) developing a high-speed correlation algorithm that is suited for the target hardware. A correlation routine was chosen as the design goal because of its importance to the noise radar\u27s ability to estimate the presence of a return signal. Furthermore, it is a computationally intensive process that was used to determine the feasibility of the processing component. To determine the performance of the proposed algorithm, results from simulation and experiments involving representative hardware were compared to the current system. Post-implementation reports of the FPGA-based correlator indicated zero timing failures, less than a Watt of power consumption, and a 44% utilization of the Virtex-5\u27s logic resources
    • …
    corecore