15,895 research outputs found

    Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle

    Get PDF
    The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein

    DeepSig: Deep learning improves signal peptide detection in proteins

    Get PDF
    Motivation: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. Availability and implementation: DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio

    Computational approaches to predict protein functional families and functional sites.

    Get PDF
    Understanding the mechanisms of protein function is indispensable for many biological applications, such as protein engineering and drug design. However, experimental annotations are sparse, and therefore, theoretical strategies are needed to fill the gap. Here, we present the latest developments in building functional subclassifications of protein superfamilies and using evolutionary conservation to detect functional determinants, for example, catalytic-, binding- and specificity-determining residues important for delineating the functional families. We also briefly review other features exploited for functional site detection and new machine learning strategies for combining multiple features

    Prediction of antigenic epitopes and MHC binders of neurotoxin alpha-KTx 3.8 from Mesobuthus tamulus sindicus

    Get PDF
    The potassium channel inhibitor alpha-KTx 3.8, a 38-residue peptide was isolated from the venom of Mesobuthus tamulus sindicus. In this assay we have predicted the binding affinity of alpha-KTx 3.8 having 38 amino acids, which shows 30 nonamers. Peptide fragments of the neurotoxin can be used to select nonamers for use in rational vaccine design and to increase the understanding of roles of the immune system in neurotoxin studies. Small segment ‘4-INVKCRGSPQCIQPCR-19’of neurotoxin proteincalled the antigenic epitopes is sufficient for eliciting the desired immune response. We also found the SVM based MHCII-IAb peptide regions, 26- GKCMNGKCH, 20- DAGMRFGKC, 1- GVPINVKCR, 19- RDAGMRFGK, (optimal score is 0.388); MHCII-IAd peptide regions, 20- DAGMRFGKC, 14- CIQPCRDAG, 10- GSPQCIQPC, 25- FGKCMNGKC, (optimal score is 0.386); MHCII-IAg7 peptide regions, 18- CRDAGMRFG, 17- PCRDAGMRF, 14- CIQPCRDAG, 3- PINVKCRGS, (optimal score is 1.341); and MHCIIRT1.B peptide regions, 16- QPCRDAGMR, 29- MNGKCHCTP, 8- CRGSPQCIQ, 7- KCRGSPQCI, (optimal score is -0.039) which represented predicted binders from neurotoxin protein. CTL epitope with their (ANN/SVM) scores were predicted to be 1- GVPINVKCR (0.81/0.87220559). This theme is implemented in designing subunit and synthetic peptide vaccines. We have predicted a successful immunization

    The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases

    Get PDF
    One of the most intriguing groups of enzymes, the feruloyl esterases (FAEs), is ubiquitous in both simple and complex organisms. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing high-added value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production and partial characterization of FAEs from fungi, while much less is known about FAEs of bacterial or plant origin. Initial classification studies on FAEs were restricted on sequence similarity and substrate specificity on just four model substrates and considered only a handful of FAEs belonging to the fungal kingdom. This study centers on the descriptor-based classification and structural analysis of experimentally verified and putative FAEs; nevertheless, the framework presented here is applicable to every poorly characterized enzyme family. 365 FAE-related sequences of fungal, bacterial and plantae origin were collected and they were clustered using Self Organizing Maps followed by k-means clustering into distinct groups based on amino acid composition and physico-chemical composition descriptors derived from the respective amino acid sequence. A Support Vector Machine model was subsequently constructed for the classification of new FAEs into the pre-assigned clusters. The model successfully recognized 98.2% of the training sequences and all the sequences of the blind test. The underlying functionality of the 12 proposed FAE families was validated against a combination of prediction tools and published experimental data. Another important aspect of the present work involves the development of pharmacophore models for the new FAE families, for which sufficient information on known substrates existed. Knowing the pharmacophoric features of a small molecule that are essential for binding to the members of a certain family opens a window of opportunities for tailored applications of FAEs

    Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction

    Full text link
    Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as Docking and Molecular Dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions.Comment: 46 pages, 10 figure
    • …
    corecore