1,643 research outputs found

    A Hybrid Intelligent System for Stamping Process Planning in Progressive Die Design

    Get PDF
    This paper presents an intelligent, hybrid system for stamping process planning in progressive die design. The system combines the flexibility of blackboard architecture with case-based reasoning. The hybrid system has the advantage that it can use past knowledge and experience for case-based reasoning when it exists, and other reasoning approaches when it doesn’t exist. A prototype system has been implemented in CLIPS and interfaced with Solid Edge CAD system. An example is included to demonstrate the approach.Singapore-MIT Alliance (SMA

    Integrated Process Simulation and Die Design in Sheet Metal Forming

    Get PDF
    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analysed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers

    Expert System Applications in Sheet Metal Forming

    Get PDF

    An analytical cost estimation approach for generic sheet metal 3D models

    Get PDF
    This paper defines a systematic workflow for production cost estimation of sheet metal stamped components. The approach represents a solution toward the adoption of Design to Cost methods during early product design. It consists in a sequence of steps that, starting from a 3D CAD model with annotations (material, roughness and tolerances) and production information (batch and production volume) leads to the manufacturing cost through an analytic cost breakdown (raw material, stamping and accessory processes, setup and tooling). The calculation process mainly consists in a first step where geometric algorithms calculate the sheet metal blank (dimensions, shape, thickness) and specific product features (e.g. flanges, louvers, embossing, etc.). The following steps allow to calculate the raw material, the stamping process and the process-related parameters, which are the manufacturing cost drivers (e.g. press, stamping rate/sequence/force and die dimensions/weight). The manufacturing cost is the sum of the previous calculated items. Testing the approach for three different components, the average absolute deviation measured between the estimated and actual cost was less than 10% and such a result looks promising for adopting this method for evaluating alternative design solutions

    Numerical modelling and simulation in sheet metal forming

    Get PDF
    The application of numerical modelling and simulation in manufacturing technologies is looking back over about a 20–30 years history. In recent years, the role of modelling and simulation in engineering and in manufacturing industry has been continuously increasing. It is well known that during manufacturing processes simultaneous the effect of many different parameters can be observed. This is the reason why in former years, detailed analysis of manufacturing processes could have been done only by time-consuming and expensive trial-and-error methods. Due to the recent developments in the methods of modelling and simulation, as well as in computational facilities, modelling and simulation has become an everyday tool in engineering practice. Besides the aforementioned facts, the emerging role of modelling and simulation can also be explained by the growing globalisation and competition of the world market requiring shorter lead times and more cost effective solutions. In spite the enormous development of hardware and software facilities, the exclusive use of numerical modelling still seems to be very time- and cost consuming, and there is still often a high scepticism about the results among industrialists. Therefore, the purpose of this paper is to overview the present situation of numerical modelling and simulation in sheet metal forming, mainly from the viewpoint of scientific research and industrial applications

    Optimization of strip-layout using graph-theoretic methodology for stamping operations on progressive die: a case study

    Get PDF
    The design of the progressive die stamping process is optimized through minimizing the number of die stamping stations in the strip layout to reduce the die cost. In order to accomplish such end, in this study, a graph-theoretic based method is implemented to model and optimize the strip layout design. This method starts with mapping stamping features into stamping operations. This step is followed by constructing two graphs to model the precedence and adjacency constraints among stamping operations based on a set of manufacturing rules. These two graphs are called: operation precedence graph and operation adjacency graph. In the next step, a topological sorting algorithm clusters the operations into partially ordered sets. Then, a graph coloring algorithm clusters the partially ordered operations sets into final sequence of operations. The graph-theoretic technique has been implemented on a part currently manufactured by laser cutting process technology in some Egyptian factory in Cairo. This study indicated that the graph-theoretic technique offers several advantages including the ease of programming and transparency in understanding the obtained strip layout design. This is besides being a systematic and logically approach to obtain an optimized strip layout design. In general, the progressive die manufacturing can increase productivity of sheet metal works in Egypt, only in situations of mass production. The limitation is that it requires considerable skill level and training for labor to conduct die strip layout design

    Improvement Activities in Stamping Die Manufacturing: A Systematic Literature Review

    Get PDF
    Die making is regarded as the mother of all industries. In the manufacturing world, this industry is thought to have existed for a long time. There is a need to address the improvement activities in this area in order to assess their relevance, results, and impacts on its latest industrial development. However, there were insufficient studies that systematically reviewed the existing literature related to stamping die manufacturing's latest improvement activities. As a result, the current article conducted a systematic literature review on stamping die manufacturing improvement activities. The present study applies the integrated multiple research design, and the review was based on the publication standard, namely the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). This research is using two leading databases, namely Scopus and Science Direct, and five supporting databases, namely Emerald Insight, IEE Explore, Wiley Online, Taylor & Francis, and Google Scholar. Using thematic analysis, this review has six main themes: design, machining, finishing, trials, and overall improvements. These six major themes were subdivided into 20 sub-themes. The findings show that the researchers are covering most of the improvements in the main elements of die manufacturing processes. Based on this study, the contribution for practical purposes of stamping die manufacturing improvements was identified. The study contributes significant findings, such as detailed improvement activities that are specific to the targeted issues but have the potential to be adapted or imitated by other practitioners and future researchers
    corecore