68,901 research outputs found

    Distributed estimation from relative measurements of heterogeneous and uncertain quality

    Get PDF
    This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated to nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture. In this original setup, we formulate the problem of computing the Maximum-Likelihood (ML) estimates and we design two novel algorithms, based on Least Squares regression and Expectation-Maximization (EM). The first algorithm (LS- EM) is centralized and performs the estimation from relative measurements, the soft classification of the measurements, and the estimation of the noise parameters. The second algorithm (Distributed LS-EM) is distributed and performs estimation and soft classification of the measurements, but requires the knowledge of the noise parameters. We provide rigorous proofs of convergence of both algorithms and we present numerical experiments to evaluate and compare their performance with classical solutions. The experiments show the robustness of the proposed methods against different kinds of noise and, for the Distributed LS-EM, against errors in the knowledge of noise parameters.Comment: Submitted to IEEE transaction

    A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models

    Get PDF
    We propose a new method for the Maximum Likelihood Estimator (MLE) of nonlinear mixed effects models when the variance matrix of Gaussian random effects has a prescribed pattern of zeros (PPZ). The method consists in coupling the recently developed Iterative Conditional Fitting (ICF) algorithm with the Expectation Maximization (EM) algorithm. It provides positive definite estimates for any sample size, and does not rely on any structural assumption on the PPZ. It can be easily adapted to many versions of EM.Comment: Accepted for publication in Statistics and Computin

    EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis

    Get PDF
    Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.Comment: 14 pages, 4 figures, 4 table

    A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market

    Get PDF
    We propose a dynamic network model where two mechanisms control the probability of a link between two nodes: (i) the existence or absence of this link in the past, and (ii) node-specific latent variables (dynamic fitnesses) describing the propensity of each node to create links. Assuming a Markov dynamics for both mechanisms, we propose an Expectation-Maximization algorithm for model estimation and inference of the latent variables. The estimated parameters and fitnesses can be used to forecast the presence of a link in the future. We apply our methodology to the e-MID interbank network for which the two linkage mechanisms are associated with two different trading behaviors in the process of network formation, namely preferential trading and trading driven by node-specific characteristics. The empirical results allow to recognise preferential lending in the interbank market and indicate how a method that does not account for time-varying network topologies tends to overestimate preferential linkage.Comment: 19 pages, 6 figure

    Construction of Bayesian Deformable Models via Stochastic Approximation Algorithm: A Convergence Study

    Full text link
    The problem of the definition and the estimation of generative models based on deformable templates from raw data is of particular importance for modelling non aligned data affected by various types of geometrical variability. This is especially true in shape modelling in the computer vision community or in probabilistic atlas building for Computational Anatomy (CA). A first coherent statistical framework modelling the geometrical variability as hidden variables has been given by Allassonni\`ere, Amit and Trouv\'e (JRSS 2006). Setting the problem in a Bayesian context they proved the consistency of the MAP estimator and provided a simple iterative deterministic algorithm with an EM flavour leading to some reasonable approximations of the MAP estimator under low noise conditions. In this paper we present a stochastic algorithm for approximating the MAP estimator in the spirit of the SAEM algorithm. We prove its convergence to a critical point of the observed likelihood with an illustration on images of handwritten digits
    • …
    corecore