560 research outputs found

    A framework for space-efficient string kernels

    Full text link
    String kernels are typically used to compare genome-scale sequences whose length makes alignment impractical, yet their computation is based on data structures that are either space-inefficient, or incur large slowdowns. We show that a number of exact string kernels, like the kk-mer kernel, the substrings kernels, a number of length-weighted kernels, the minimal absent words kernel, and kernels with Markovian corrections, can all be computed in O(nd)O(nd) time and in o(n)o(n) bits of space in addition to the input, using just a rangeDistinct\mathtt{rangeDistinct} data structure on the Burrows-Wheeler transform of the input strings, which takes O(d)O(d) time per element in its output. The same bounds hold for a number of measures of compositional complexity based on multiple value of kk, like the kk-mer profile and the kk-th order empirical entropy, and for calibrating the value of kk using the data

    String Reconstruction from Substring Compositions

    Full text link
    Motivated by mass-spectrometry protein sequencing, we consider a simply-stated problem of reconstructing a string from the multiset of its substring compositions. We show that all strings of length 7, one less than a prime, or one less than twice a prime, can be reconstructed uniquely up to reversal. For all other lengths we show that reconstruction is not always possible and provide sometimes-tight bounds on the largest number of strings with given substring compositions. The lower bounds are derived by combinatorial arguments and the upper bounds by algebraic considerations that precisely characterize the set of strings with the same substring compositions in terms of the factorization of bivariate polynomials. The problem can be viewed as a combinatorial simplification of the turnpike problem, and its solution may shed light on this long-standing problem as well. Using well known results on transience of multi-dimensional random walks, we also provide a reconstruction algorithm that reconstructs random strings over alphabets of size 4\ge4 in optimal near-quadratic time

    Maximum entropy models capture melodic styles

    Full text link
    We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of the musical corpus which was used to train it. Instead of using the nn-body interactions of (n1)(n-1)-order Markov models, traditionally used in automatic music generation, we use a kk-nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. The results show that our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, this Maximum Entropy scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation

    MissMax: Alignment-free sequence comparison with mismatches through filtering and heuristics

    Get PDF
    BACKGROUND: Measuring sequence similarity is central for many problems in bioinformatics. In several contexts alignment-free techniques based on exact occurrences of substrings are faster, but also less accurate, than alignment-based approaches. Recently, several studies attempted to bridge the accuracy gap with the introduction of approximate matches in the definition of composition-based similarity measures. RESULTS: In this work we present MissMax, an exact algorithm for the computation of the longest common substring with mismatches between each suffix of a sequence x and a sequence y. This collection of statistics is useful for the computation of two similarity measures: the longest and the average common substring with k mismatches. As a further contribution we provide a “relaxed” version of MissMax that does not guarantee the exact solution, but it is faster in practice and still very precise

    Nephele: genotyping via complete composition vectors and MapReduce

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current sequencing technology makes it practical to sequence many samples of a given organism, raising new challenges for the processing and interpretation of large genomics data sets with associated metadata. Traditional computational phylogenetic methods are ideal for studying the evolution of gene/protein families and using those to infer the evolution of an organism, but are less than ideal for the study of the whole organism mainly due to the presence of insertions/deletions/rearrangements. These methods provide the researcher with the ability to group a set of samples into distinct genotypic groups based on sequence similarity, which can then be associated with metadata, such as host information, pathogenicity, and time or location of occurrence. Genotyping is critical to understanding, at a genomic level, the origin and spread of infectious diseases. Increasingly, genotyping is coming into use for disease surveillance activities, as well as for microbial forensics. The classic genotyping approach has been based on phylogenetic analysis, starting with a multiple sequence alignment. Genotypes are then established by expert examination of phylogenetic trees. However, these traditional single-processor methods are suboptimal for rapidly growing sequence datasets being generated by next-generation DNA sequencing machines, because they increase in computational complexity quickly with the number of sequences.</p> <p>Results</p> <p>Nephele is a suite of tools that uses the complete composition vector algorithm to represent each sequence in the dataset as a vector derived from its constituent k-mers by passing the need for multiple sequence alignment, and affinity propagation clustering to group the sequences into genotypes based on a distance measure over the vectors. Our methods produce results that correlate well with expert-defined clades or genotypes, at a fraction of the computational cost of traditional phylogenetic methods run on traditional hardware. Nephele can use the open-source Hadoop implementation of MapReduce to parallelize execution using multiple compute nodes. We were able to generate a neighbour-joined tree of over 10,000 16S samples in less than 2 hours.</p> <p>Conclusions</p> <p>We conclude that using Nephele can substantially decrease the processing time required for generating genotype trees of tens to hundreds of organisms at genome scale sequence coverage.</p

    Phylogenetic Tree Construction for Starfish and Primate Genomes via Alignment Free Methods

    Get PDF
    A phylogenetic tree is a tree like diagram showing the evolutionary relationship among various species based on their differences or similarity in their physical or genetic makeup.The similarity in their genetic makeup is traditionally measured based on pairwise distance between their gene sequences using sequence alignment methods. Due to the advancement in next generation sequencing technologies there is a huge amount of datasets available for partially or completely sequenced genomes. These massive datasets requires a faster comparison methods other than the traditional alignment-based approaches. Therefore, alignment free approaches are gaining popularity in recent years. In this thesis, we compare alignment-based and various alignment free methods for phylogenetic tree construction. The alignment free methods we study are based on k-mer frequency, Average Common Substring (ACS) and ACS with position restrictions and mismatches. The position restricted ACS is a novel contribution of this thesis. To evaluate performance of the alignment free approaches we applied it to phylogeny reconstruction using DNA ( 27 primate mitochondrial genomes) and protein (Starfish RNA-seq) sequence sets. The phylogenetic trees are constructed using Neighbor joining to the distance matrices obtained with the above mentioned alignment-free methods. The resulting phylogenetic trees are then compared with the reference tree using Branch Score Distance measure. Both the Neighbor joining and the Branch Score Distance Measure are calculated by using the programs neighbor and treedist from the PHYLIP package

    Patterns and Signals of Biology: An Emphasis On The Role of Post Translational Modifications in Proteomes for Function and Evolutionary Progression

    Get PDF
    After synthesis, a protein is still immature until it has been customized for a specific task. Post-translational modifications (PTMs) are steps in biosynthesis to perform this customization of protein for unique functionalities. PTMs are also important to protein survival because they rapidly enable protein adaptation to environmental stress factors by conformation change. The overarching contribution of this thesis is the construction of a computational profiling framework for the study of biological signals stemming from PTMs associated with stressed proteins. In particular, this work has been developed to predict and detect the biological mechanisms involved in types of stress response with PTMs in mitochondrial (Mt) and non-Mt protein. Before any mechanism can be studied, there must first be some evidence of its existence. This evidence takes the form of signals such as biases of biological actors and types of protein interaction. Our framework has been developed to locate these signals, distilled from “Big Data” resources such as public databases and the the entire PubMed literature corpus. We apply this framework to study the signals to learn about protein stress responses involving PTMs, modification sites (MSs). We developed of this framework, and its approach to analysis, according to three main facets: (1) by statistical evaluation to determine patterns of signal dominance throughout large volumes of data, (2) by signal location to track down the regions where the mechanisms must be found according to the types and numbers of associated actors at relevant regions in protein, and (3) by text mining to determine how these signals have been previously investigated by researchers. The results gained from our framework enable us to uncover the PTM actors, MSs and protein domains which are the major components of particular stress response mechanisms and may play roles in protein malfunction and disease

    ALIGNMENT-FREE METHODS AND ITS APPLICATIONS

    Get PDF
    Comparing biological sequences remains one of the most vital activities in Bioinformatics. Comparing biological sequences would address the relatedness between species, and find similar structures that might lead to similar functions. Sequence alignment is the default method, and has been used in the domain for over four decades. It gained a lot of trust, but limitations and even failure has been reported, especially with the new generated genomes. These new generated genomes have bigger size, and to some extent suffer errors. Such errors come mainly as a result from the sequencing machine. These sequencing errors should be considered when submitting sequences to GenBank, for sequence comparison, it is often hard to address or even trace this problem. Alignment-based methods would fail with such errors, and even if biologists still trust them, reports showed failure with these methods. The poor results of alignment-based methods with erratic sequences, motivated researchers in the domain to look for alternatives. These alternative methods are alignment-free, and would overcome the shortcomings of alignment-based methods. The work of this thesis is based on alignment-free methods, and it conducts an in-depth study to evaluate these methods, and find the right domain’s application for them. The right domain for alignment-free methods could be by applying them to data that were subjected to manufactured errors, and test the methods provide better comparison results with data that has naturally severe errors. The two techniques used in this work are compression-based and motif-based (or k-mer based, or signal based). We also addressed the selection of the used motifs in the second technique, and how to progress the results by selecting specific motifs that would enhance the quality of results. In addition, we applied an alignment-free method to a different domain, which is gene prediction. We are using alignment-free in gene prediction to speed up the process of providing high quality results, and predict accurate stretches in the DNA sequence, which would be considered parts of genes

    An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The "off-target" silencing effect hinders the development of siRNA-based therapeutic and research applications. Existing solutions for finding possible locations of siRNA seats within a large database of genes are either too slow, miss a portion of the targets, or are simply not designed to handle a very large number of queries. We propose a new approach that reduces the computational time as compared to existing techniques.</p> <p>Findings</p> <p>The proposed method employs tree-based storage in a form of a modified truncated suffix tree to sort all possible short string substrings within given set of strings (i.e. transcriptome). Using the new algorithm, we pre-computed a list of the best siRNA locations within each human gene ("siRNA seats"). siRNAs designed to reside within siRNA seats are less likely to hybridize off-target. These siRNA seats could be used as an input for the traditional "set-of-rules" type of siRNA designing software. The list of siRNA seats is available through a publicly available database located at <url>http://web.cos.gmu.edu/~gmanyam/siRNA_db/search.php</url></p> <p>Conclusions</p> <p>In attempt to perform top-down prediction of the human siRNA with minimized off-target hybridization, we developed an efficient algorithm that employs suffix tree based storage of the substrings. Applications of this approach are not limited to optimal siRNA design, but can also be useful for other tasks involving selection of the characteristic strings specific to individual genes. These strings could then be used as siRNA seats, as specific probes for gene expression studies by oligonucleotide-based microarrays, for the design of molecular beacon probes for Real-Time PCR and, generally, any type of PCR primers.</p
    corecore