865 research outputs found

    Your click decides your fate: Inferring Information Processing and Attrition Behavior from MOOC Video Clickstream Interactions

    Full text link
    In this work, we explore video lecture interaction in Massive Open Online Courses (MOOCs), which is central to student learning experience on these educational platforms. As a research contribution, we operationalize video lecture clickstreams of students into cognitively plausible higher level behaviors, and construct a quantitative information processing index, which can aid instructors to better understand MOOC hurdles and reason about unsatisfactory learning outcomes. Our results illustrate how such a metric inspired by cognitive psychology can help answer critical questions regarding students' engagement, their future click interactions and participation trajectories that lead to in-video & course dropouts. Implications for research and practice are discusse

    Data Mining in Electronic Commerce

    Full text link
    Modern business is rushing toward e-commerce. If the transition is done properly, it enables better management, new services, lower transaction costs and better customer relations. Success depends on skilled information technologists, among whom are statisticians. This paper focuses on some of the contributions that statisticians are making to help change the business world, especially through the development and application of data mining methods. This is a very large area, and the topics we cover are chosen to avoid overlap with other papers in this special issue, as well as to respect the limitations of our expertise. Inevitably, electronic commerce has raised and is raising fresh research problems in a very wide range of statistical areas, and we try to emphasize those challenges.Comment: Published at http://dx.doi.org/10.1214/088342306000000204 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Binary Particle Swarm Optimization based Biclustering of Web usage Data

    Full text link
    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketing. Experiments are conducted on real dataset to prove the efficiency of the proposed algorithms

    Clickstream Data Analysis: A Clustering Approach Based on Mixture Hidden Markov Models

    Get PDF
    Nowadays, the availability of devices such as laptops and cell phones enables one to browse the web at any time and place. As a consequence, a company needs to have a website so as to maintain or increase customer loyalty and reach potential new customers. Besides, acting as a virtual point-of-sale, the company portal allows it to obtain insights on potential customers through clickstream data, web generated data that track users accesses and activities in websites. However, these data are not easy to handle as they are complex, unstructured and limited by lack of clear information about user intentions and goals. Clickstream data analysis is a suitable tool for managing the complexity of these datasets, obtaining a cleaned and processed sequential dataframe ready to identify and analyse patterns. Analysing clickstream data is important for companies as it enables them to under stand differences in web user behaviour while they explore websites, how they move from one page to another and what they select in order to define business strategies tar geting specific types of potential costumers. To obtain this level of insight it is pivotal to understand how to exploit hidden information related to clickstream data. This work presents the cleaning and pre-processing procedures for clickstream data which are needed to get a structured sequential dataset and analyses these sequences by the application of Mixture of discrete time Hidden Markov Models (MHMMs), a statisti cal tool suitable for clickstream data analysis and profile identification that has not been widely used in this context. Specifically, hidden Markov process accounts for a time varying latent variable to handle uncertainty and groups together observed states based on unknown similarity and entails identifying both the number of mixture components re lating to the subpopulations as well as the number of latent states for each latent Markov chain. However, the application of MHMMs requires the identification of both the number of components and states. Information Criteria (IC) are generally used for model selection in mixture hidden Markov models and, although their performance has been widely studied for mixture models and hidden Markov models, they have received little attention in the MHMM context. The most widely used criterion is BIC even if its performance for these models depends on factors such as the number of components and sequence length. Another class of model selection criteria is the Classification Criteria (CC). They were defined specifically for clustering purposes and rely on an entropy measure to account for separability between groups. These criteria are clearly the best option for our purpose, but their application as model selection tools for MHMMs requires the definition of a suitable entropy measure. In the light of these considerations, this work proposes a classification criterion based on an integrated classification likelihood approach for MHMMs that accounts for the two latent classes in the model: the subpopulations and the hidden states. This criterion is a modified ICL BIC, a classification criterion that was originally defined in the mixture model context and used in hidden Markov models. ICL BIC is a suitable score to identify the number of classes (components or states) and, thus, to extend it to MHMMs we de fined a joint entropy accounting for both a component-related entropy and a state-related conditional entropy. The thesis presents a Monte Carlo simulation study to compare selection criteria per formance, the results of which point out the limitations of the most commonly used infor mation criteria and demonstrate that the proposed criterion outperforms them in identify ing components and states, especially in short length sequences which are quite common in website accesses. The proposed selection criterion was applied to real clickstream data collected from the website of a Sicilian company operating in the hospitality sector. Data was modelled by an MHMM identifying clusters related to the browsing behaviour of web users which provided essential indications for developing new business strategies. This thesis is structured as follows: after an introduction on the main topics in Chapter 1, we present the clickstream data and their cleaning and pre-processing steps in Chapter 2; Chapter 3 illustrates the structure and estimation algorithms of mixture hidden Markov models; Chapter 4 presents a review of model selection criteria and the definition of the proposed ICL BIC for MHMMs; the real clickstream data analysis follows in Chapter 5

    Statistical modelling of clickstream behaviour to inform real-time advertising decisions

    Get PDF
    Online user browsing generates vast quantities of typically unexploited data. Investigating this data and uncovering the valuable information it contains can be of substantial value to online businesses, and statistics plays a key role in this process. The data takes the form of an anonymous digital footprint associated with each unique visitor, resulting in 10610^{6} unique profiles across 10710^{7} individual page visits on a daily basis. Exploring, cleaning and transforming data of this scale and high dimensionality (2TB+ of memory) is particularly challenging, and requires cluster computing. We outline a variable selection method to summarise clickstream behaviour with a single value, and make comparisons to other dimension reduction techniques. We illustrate how to apply generalised linear models and zero-inflated models to predict sponsored search advert clicks based on keywords. We consider the problem of predicting customer purchases (known as conversions), from the customer’s journey or clickstream, which is the sequence of pages seen during a single visit to a website. We consider each page as a discrete state with probabilities of transitions between the pages, providing the basis for a simple Markov model. Further, Hidden Markov models (HMMs) are applied to relate the observed clickstream to a sequence of hidden states, uncovering meta-states of user activity. We can also apply conventional logistic regression to model conversions in terms of summaries of the profile’s browsing behaviour and incorporate both into a set of tools to solve a wide range of conversion types where we can directly compare the predictive capability of each model. In real-time, predicting profiles that are likely to follow similar behaviour patterns to known conversions, will have a critical impact on targeted advertising. We illustrate these analyses with results from real data collected by an Audience Management Platform (AMP) - Carbon

    R Package clickstream: Analyzing Clickstream Data with Markov Chains

    Get PDF
    Clickstream analysis is a useful tool for investigating consumer behavior, market research and software testing. I present the clickstream package which provides functionality for reading, clustering, analyzing and writing clickstreams in R. The package allows for a modeling of lists of clickstreams as zero-, first- and higher-order Markov chains. I illustrate the application of clickstream for a list of representative clickstreams from an online store

    Website Content Analysis Using Clickstream Data and Apriori Algorithm

    Get PDF
    Clickstream analysis is the process of collecting, analyzing, and reporting data of visited pages by visitor at the time of mouse clicks. Clickstream data are generally stored on a web server in the access.log file including IP Address data, reference pages, and access time. This study aims to analyze clickstream data by converting into the form of a comma sparated value (csv) so that the string inside of it could be grouped and stored in a database. The important information in the database was processed and retrieved by using one of the techniques in web mining called apriori algorithm analysis. Apriori algorithm implementation was done at the time of reading the database and table query analysis on the software developed. Results of this study were the statistics describing the level of access to web pages that were very helpful for web developers to develop web sites
    • …
    corecore