65 research outputs found

    Superconducting qubits for quantum annealing applications

    Get PDF
    Over the last two decades, Quantum Annealing (QA) has grown to be a commercial technology with machines reaching the scale of 5000 interconnected qubits. Two reasons for this progress are the relative ease of implementing adiabatic Hamiltonian control and QA’s partial robustness against errors caused by decoherence. Despite the success of this approach to quantum computation, proving a scaling advantage over classical computation remains an elusive goal to this date. Different strategies are therefore being considered to boost the performance of quantum annealing. These include using more coherent qubit architectures and error-suppression to limit the effect of environmental noise, implementing non-stoquastic driver terms and tailored annealing schedules to enhance the success probability of the algorithm, and using many-body couplers to embed higher-order binary optimisation problems with less resource overhead. This thesis contributes to these efforts in two different ways. The first part provides a detailed numerical analysis and a physical layout for a threebody coupler for flux qubits based on ancillary spins. The application of the coupler in a coherence-signature QA Hamiltonian is also considered and the results of the simulated quantum evolution are compared to the outcomes of classical optimisation on the problem Hamiltonian showing that the classical algorithms cannot correctly reproduce the state distribution at the end of QA. In the second part of the thesis, we develop a numerical method for mapping the Hamiltonian of a composite superconducting circuit to an effective many-qubit Hamiltonian. By overcoming drawbacks of standard reduction methods, this protocol can be used to guide the design of non-stoquastic and many-body Hamiltonian terms, as well as to get a more precise evaluation of the QA schedule parameters, which can greatly improve the outcomes of the optimisation. This numerical work is accompanied by a proposal for an experimental verification of the predictions of the reduction protocol and by some preliminary experimental results

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point

    Characterization of Microwave Discharge Plasmas for Surface Processing

    Get PDF
    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency Ć’ = 2.45 GHz and a pulse repetitive MW discharge in air at Ć’ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance

    Misalignment tolerant model and force calculation in a resonator array for inductive power transfer

    Get PDF
    In this work, an inductive power transfer (IPT) system composed of an array of multiple magnetically coupled resonant inductors (cells) has been considered, allowing the transmission distance to be increased or the misalignment between the emitter and receiver coils to be considered. The analysis of the arrays can be carried out with the theory of magnetoinductive waves (MIW) or with circuit theory; the latter approach has been followed. The impedance matrix of the resonator array has been modelled for different receiver shapes and dimensions. Moreover, it has been expressed as a function of the space improving the accuracy of the model. The model has been exploited to calculate all the currents and voltages of the system. In first approximation, only the displacement in the MIW propagation direction has been considered, whereas the contribution of the receiver is expressed as a defect and becomes a function of the space as the mutual inductances between the circuits vary according to the receiver position. The self- and mutual inductance coefficients have been evaluated for each circuit of the system by applying the partial inductance method, whose formulas have been implemented in Matlab environment. These results have been validated by means of magnetostatic FEM analysis of the system using a commercial software. Experimental measurements on a prototype of a 1-D resonator array have been performed, confirming the calculated values of the currents and as a consequence, of the mutual inductances. The last part of the thesis is devoted to the calculation of the mechanical forces of electromagnetic origin experienced by the receiver over the array, as a result of the interaction between the whole magnetic field - generated by all the array cells - and the current circulating in the receiver. These forces have been theoretically discussed first, with a subsequent implementation of the calculation in Matlab environment and analysis of the obtained results

    A Time-resolved Investigation of the Hall Thruster Breathing Mode.

    Full text link
    The existence of plasma oscillations in the near and far field discharge of a Hall effect thruster alters the conventionally held view of their operation as steady electrostatic propulsion devices. Indeed, the consequences from fluctuations in ionized propellant density, temperature, and potential may include increased thrust, exacerbated engine erosion, and spacecraft interference. In this work, the unsteady nature of a Hall effect thruster discharge is investigated via two-dimensional, time-resolved plasma measurements. A novel dual Langmuir probe diagnostic is developed to enable an unprecedented temporal resolution for electrostatically acquired plasma properties near the upper theoretical limits of this probe. Observations of large amplitude transient oscillations caused by the Hall thruster breathing mode are seen for all thruster conditions at all spatial locations and in all measured plasma properties including: discharge current, electron density, electron temperature, and plasma potential. A unique method of spatiotemporal data fusion facilitates visualization of two-dimensional time-resolved planar plasma density contour maps is also developed where discrete turbulent bursts of plasma are tracked as the thruster exhales breaths of ionized propellant at velocities in excess of 12 km/s. This time-resolved investigation of the plasma downstream from a Hall thruster unveils an environment rich in oscillatory behavior dominated by the Hall thruster breathing mode. These insights emphasize the importance of time-resolved plasma measurements and, through enhanced understanding of the discharge process, may ultimately lead to improved thruster designs that work in concert with plasma fluctuations to achieve enhanced performance.Ph.D.Aerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/76022/1/lobbia_1.pd

    Metamaterials for Decoupling Antennas and Electromagnetic Systems

    Get PDF
    This research focuses on the development of engineered materials, also known as meta- materials, with desirable effective constitutive parameters: electric permittivity (epsilon) and magnetic permeability (mu) to decouple antennas and noise mitigation from electromagnetic systems. An interesting phenomenon of strong relevance to a wide range of problems, where electromagnetic interference is of concern, is the elimination of propagation when one of the constitutive parameters is negative. In such a scenario, transmission of electromagnetic energy would cease, and hence the coupling between radiating systems is reduced. In the first part of this dissertation, novel electromagnetic artificial media have been developed to alleviate the problem of mutual coupling between high-profile and ow-profile antenna systems. The developed design configurations are numerically simulated, and experimentally validated. In the mutual coupling problem between high-profile antennas, a decoupling layer based on artificial magnetic materials (AMM) has been developed and placed between highly-coupled monopole antenna elements spaced by less than Lambda/6, where Lambda is the operating wavelength of the radiating elements. The decoupling layer not only provides high mutual coupling suppression (more than 20-dB) but also maintains good impedance matching and low correlation between the antenna elements suitable for use in Multiple-Input Multiple-Output (MIMO) communication systems. In the mutual coupling problem between low-profile antennas, novel sub-wavelength complementary split-ring resonators (CSRRs) are developed to decouple microstrip patch antenna elements. The proposed design con figuration has the advantage of low-cost production and maintaining the pro file of the antenna system unchanged without the need for extra layers. Using the designed structure, a 10-dB reduction in the mutual coupling between two patch antennas has been achieved. The second part of this dissertation utilizes electromagnetic artificial media for noise mitigation and reduction of undesirable electromagnetic radiation from high-speed printed-circuit boards (PCBs) and modern electronic enclosures with openings (apertures). Numerical results based on the developed design configurations are presented, discussed, and compared with measurements. To alleviate the problem of simultaneous switching noise (SSN) in high-speed microprocessors and personal computers, a novel technique based on cascaded CSRRs has been proposed. The proposed design has achieved a wideband suppression of SSN and maintained a robust signal integrity performance. A novel use of electromagnetic bandgap (EBG) structures has been proposed to mitigate undesirable electromagnetic radiation from enclosures with openings. By using ribbon of EBG surfaces, a significant suppression of electromagnetic radiation from openings has been achieved

    Metamaterial

    Get PDF
    In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow

    Study of a Non-Equilibrium Plasma Pinch with Application for Microwave Generation

    Full text link
    The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with small hole at the flat end, and a mock magnetron without biasing magnetic field are built. The electrons generated at the pinch are very difficult to capture, therefore a novel device is built to capture and transport the electrons from the pinch to the magnetron. The novel cup-rod-needle device successfully serves the purpose to capture and transport electrons to monitor the pinch current. Further, the device has the potential to field emit charges from its needle end acting as a pulsed electron source for other devices such as the magnetron. Diagnostics tools are designed, modeled, built, calibrated, and implemented in the machine to measure the pinch dynamics. A novel, UNLV patented electromagnetic dot sensors are successfully calibrated, and implemented in the machine. A new calibration technique is developed and test stands designed and built to measure the dot\u27s ability to track the impetus signal over its dynamic range starting and ending in the noise region. The patented EM-dot sensor shows superior performance over traditional electromagnetic sensors, such as Rogowski coils. On the other hand, the cup-rod structure, when grounded on the rod side, serves as a diagnostic tool to monitor the pinch current by sampling the actual current, a quantity that has been always very challenging to measure without perturbing the pinch. To the best of our knowledge, this method of measuring the pinch current is unique and has never been done before. Agreement with other models is shown. The operation of the NEPP machine with the hole in the center of the anode and the magnetron connected including the cup-rod structure is examined against the NEPP machine signature with solid anode. Both cases showed excellent agreement. This suggests that the existence of the hole and the diagnostic tool inside the anode have negligible effects on the pinch
    • …
    corecore