1,913 research outputs found

    Progressive Joint Modeling in Unsupervised Single-channel Overlapped Speech Recognition

    Full text link
    Unsupervised single-channel overlapped speech recognition is one of the hardest problems in automatic speech recognition (ASR). Permutation invariant training (PIT) is a state of the art model-based approach, which applies a single neural network to solve this single-input, multiple-output modeling problem. We propose to advance the current state of the art by imposing a modular structure on the neural network, applying a progressive pretraining regimen, and improving the objective function with transfer learning and a discriminative training criterion. The modular structure splits the problem into three sub-tasks: frame-wise interpreting, utterance-level speaker tracing, and speech recognition. The pretraining regimen uses these modules to solve progressively harder tasks. Transfer learning leverages parallel clean speech to improve the training targets for the network. Our discriminative training formulation is a modification of standard formulations, that also penalizes competing outputs of the system. Experiments are conducted on the artificial overlapped Switchboard and hub5e-swb dataset. The proposed framework achieves over 30% relative improvement of WER over both a strong jointly trained system, PIT for ASR, and a separately optimized system, PIT for speech separation with clean speech ASR model. The improvement comes from better model generalization, training efficiency and the sequence level linguistic knowledge integration.Comment: submitted to TASLP, 07/20/2017; accepted by TASLP, 10/13/201

    End-to-End Monaural Multi-speaker ASR System without Pretraining

    Full text link
    Recently, end-to-end models have become a popular approach as an alternative to traditional hybrid models in automatic speech recognition (ASR). The multi-speaker speech separation and recognition task is a central task in cocktail party problem. In this paper, we present a state-of-the-art monaural multi-speaker end-to-end automatic speech recognition model. In contrast to previous studies on the monaural multi-speaker speech recognition, this end-to-end framework is trained to recognize multiple label sequences completely from scratch. The system only requires the speech mixture and corresponding label sequences, without needing any indeterminate supervisions obtained from non-mixture speech or corresponding labels/alignments. Moreover, we exploited using the individual attention module for each separated speaker and the scheduled sampling to further improve the performance. Finally, we evaluate the proposed model on the 2-speaker mixed speech generated from the WSJ corpus and the wsj0-2mix dataset, which is a speech separation and recognition benchmark. The experiments demonstrate that the proposed methods can improve the performance of the end-to-end model in separating the overlapping speech and recognizing the separated streams. From the results, the proposed model leads to ~10.0% relative performance gains in terms of CER and WER respectively.Comment: submitted to ICASSP201

    DIHARD II is Still Hard: Experimental Results and Discussions from the DKU-LENOVO Team

    Full text link
    In this paper, we present the submitted system for the second DIHARD Speech Diarization Challenge from the DKULENOVO team. Our diarization system includes multiple modules, namely voice activity detection (VAD), segmentation, speaker embedding extraction, similarity scoring, clustering, resegmentation and overlap detection. For each module, we explore different techniques to enhance performance. Our final submission employs the ResNet-LSTM based VAD, the Deep ResNet based speaker embedding, the LSTM based similarity scoring and spectral clustering. Variational Bayes (VB) diarization is applied in the resegmentation stage and overlap detection also brings slight improvement. Our proposed system achieves 18.84% DER in Track1 and 27.90% DER in Track2. Although our systems have reduced the DERs by 27.5% and 31.7% relatively against the official baselines, we believe that the diarization task is still very difficult.Comment: Submitted to Odyssesy 202

    Linguistic Search Optimization for Deep Learning Based LVCSR

    Full text link
    Recent advances in deep learning based large vocabulary con- tinuous speech recognition (LVCSR) invoke growing demands in large scale speech transcription. The inference process of a speech recognizer is to find a sequence of labels whose corresponding acoustic and language models best match the input feature [1]. The main computation includes two stages: acoustic model (AM) inference and linguistic search (weighted finite-state transducer, WFST). Large computational overheads of both stages hamper the wide application of LVCSR. Benefit from stronger classifiers, deep learning, and more powerful computing devices, we propose general ideas and some initial trials to solve these fundamental problems.Comment: accepted by Doctoral Consortium, INTERSPEECH 201

    Recent Progresses in Deep Learning based Acoustic Models (Updated)

    Full text link
    In this paper, we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques. We first discuss acoustic models that can effectively exploit variable-length contextual information, such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their various combination with other models. We then describe acoustic models that are optimized end-to-end with emphasis on feature representations learned jointly with rest of the system, the connectionist temporal classification (CTC) criterion, and the attention-based sequence-to-sequence model. We further illustrate robustness issues in speech recognition systems, and discuss acoustic model adaptation, speech enhancement and separation, and robust training strategies. We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.Comment: This is an updated version with latest literature until ICASSP2018 of the paper: Dong Yu and Jinyu Li, "Recent Progresses in Deep Learning based Acoustic Models," vol.4, no.3, IEEE/CAA Journal of Automatica Sinica, 201

    Sequential Multi-Frame Neural Beamforming for Speech Separation and Enhancement

    Full text link
    This work introduces sequential neural beamforming, which alternates between neural network based spectral separation and beamforming based spatial separation. Our neural networks for separation use an advanced convolutional architecture trained with a novel stabilized signal-to-noise ratio loss function. For beamforming, we explore multiple ways of computing time-varying covariance matrices, including factorizing the spatial covariance into a time-varying amplitude component and a time-invariant spatial component, as well as using block-based techniques. In addition, we introduce a multi-frame beamforming method which improves the results significantly by adding contextual frames to the beamforming formulations. We extensively evaluate and analyze the effects of window size, block size, and multi-frame context size for these methods. Our best method utilizes a sequence of three neural separation and multi-frame time-invariant spatial beamforming stages, and demonstrates an average improvement of 2.75 dB in scale-invariant signal-to-noise ratio and 14.2% absolute reduction in a comparative speech recognition metric across four challenging reverberant speech enhancement and separation tasks. We also use our three-speaker separation model to separate real recordings in the LibriCSS evaluation set into non-overlapping tracks, and achieve a better word error rate as compared to a baseline mask based beamformer.Comment: 7 pages, 7 figures, IEEE SLT 2021 (slt2020.org

    Recognizing Overlapped Speech in Meetings: A Multichannel Separation Approach Using Neural Networks

    Full text link
    The goal of this work is to develop a meeting transcription system that can recognize speech even when utterances of different speakers are overlapped. While speech overlaps have been regarded as a major obstacle in accurately transcribing meetings, a traditional beamformer with a single output has been exclusively used because previously proposed speech separation techniques have critical constraints for application to real meetings. This paper proposes a new signal processing module, called an unmixing transducer, and describes its implementation using a windowed BLSTM. The unmixing transducer has a fixed number, say J, of output channels, where J may be different from the number of meeting attendees, and transforms an input multi-channel acoustic signal into J time-synchronous audio streams. Each utterance in the meeting is separated and emitted from one of the output channels. Then, each output signal can be simply fed to a speech recognition back-end for segmentation and transcription. Our meeting transcription system using the unmixing transducer outperforms a system based on a state-of-the-art neural mask-based beamformer by 10.8%. Significant improvements are observed in overlapped segments. To the best of our knowledge, this is the first report that applies overlapped speech recognition to unconstrained real meeting audio

    Sequence Discriminative Training for Deep Learning based Acoustic Keyword Spotting

    Full text link
    Speech recognition is a sequence prediction problem. Besides employing various deep learning approaches for framelevel classification, sequence-level discriminative training has been proved to be indispensable to achieve the state-of-the-art performance in large vocabulary continuous speech recognition (LVCSR). However, keyword spotting (KWS), as one of the most common speech recognition tasks, almost only benefits from frame-level deep learning due to the difficulty of getting competing sequence hypotheses. The few studies on sequence discriminative training for KWS are limited for fixed vocabulary or LVCSR based methods and have not been compared to the state-of-the-art deep learning based KWS approaches. In this paper, a sequence discriminative training framework is proposed for both fixed vocabulary and unrestricted acoustic KWS. Sequence discriminative training for both sequence-level generative and discriminative models are systematically investigated. By introducing word-independent phone lattices or non-keyword blank symbols to construct competing hypotheses, feasible and efficient sequence discriminative training approaches are proposed for acoustic KWS. Experiments showed that the proposed approaches obtained consistent and significant improvement in both fixed vocabulary and unrestricted KWS tasks, compared to previous frame-level deep learning based acoustic KWS methods.Comment: accepted by Speech Communication, 08/02/201

    Improved Speaker-Dependent Separation for CHiME-5 Challenge

    Full text link
    This paper summarizes several follow-up contributions for improving our submitted NWPU speaker-dependent system for CHiME-5 challenge, which aims to solve the problem of multi-channel, highly-overlapped conversational speech recognition in a dinner party scenario with reverberations and non-stationary noises. We adopt a speaker-aware training method by using i-vector as the target speaker information for multi-talker speech separation. With only one unified separation model for all speakers, we achieve a 10\% absolute improvement in terms of word error rate (WER) over the previous baseline of 80.28\% on the development set by leveraging our newly proposed data processing techniques and beamforming approach. With our improved back-end acoustic model, we further reduce WER to 60.15\% which surpasses the result of our submitted CHiME-5 challenge system without applying any fusion techniques.Comment: Submitted to Interspeech 2019, Graz, Austri

    Speech Enhancement Based on Reducing the Detail Portion of Speech Spectrograms in Modulation Domain via Discrete Wavelet Transform

    Full text link
    In this paper, we propose a novel speech enhancement (SE) method by exploiting the discrete wavelet transform (DWT). This new method reduces the amount of fast time-varying portion, viz. the DWT-wise detail component, in the spectrogram of speech signals so as to highlight the speech-dominant component and achieves better speech quality. A particularity of this new method is that it is completely unsupervised and requires no prior information about the clean speech and noise in the processed utterance. The presented DWT-based SE method with various scaling factors for the detail part is evaluated with a subset of Aurora-2 database, and the PESQ metric is used to indicate the quality of processed speech signals. The preliminary results show that the processed speech signals reveal a higher PESQ score in comparison with the original counterparts. Furthermore, we show that this method can still enhance the signal by totally discarding the detail part (setting the respective scaling factor to zero), revealing that the spectrogram can be down-sampled and thus compressed without the cost of lowered quality. In addition, we integrate this new method with conventional speech enhancement algorithms, including spectral subtraction, Wiener filtering, and spectral MMSE estimation, and show that the resulting integration behaves better than the respective component method. As a result, this new method is quite effective in improving the speech quality and well additive to the other SE methods.Comment: 4 pages, 4 figures, to appear in ISCSLP 201
    • …
    corecore