2,901 research outputs found

    Valid inequalities for the single-item capacitated lot sizing problem with step-wise costs

    Get PDF
    This paper presents a new class of valid inequalities for the single-item capacitated lotsizing problem with step-wise production costs (LS-SW). We first provide a survey of different optimization methods proposed to solve LS-SW. Then, flow cover and flow cover inequalities derived from the single node flow set are described in order to generate the new class of valid inequalities. The single node flow set can be seen as a generalization of some valid relaxations of LS-SW. A new class of valid inequalities we call mixed flow cover, is derived from the integer flow cover inequalities by a lifting procedure. The lifting coefficients are sequence independent when the batch sizes (V) and the production capacities (P) are constant and if V divides P. When the restriction of the divisibility is removed, the lifting coefficients are shown to be sequence independent. We identify some cases where the mixed flow cover inequalities are facet defining. A cutting plane algorithmis proposed for these three classes of valid inequalities. The exact separation algorithmproposed for the constant capacitated case runs in polynomial time. Finally, some computational results are given to compare the performance of the different optimization methods including the new class of valid inequalities.single-item capacitated lot sizing problem, flow cover inequalities, cutting plane algorithm

    A Lagrangian relaxation approach to the edge-weighted clique problem

    Get PDF
    The bb-clique polytope CPbnCP^n_b is the convex hull of the node and edge incidence vectors of all subcliques of size at most bb of a complete graph on nn nodes. Including the Boolean quadric polytope QPnQP^n as a special case and being closely related to the quadratic knapsack polytope, it has received considerable attention in the literature. In particular, the max-cut problem is equivalent with optimizing a linear function over QPnnQP^n_n. The problem of optimizing linear functions over CPbnCP^n_b has so far been approached via heuristic combinatorial algorithms and cutting-plane methods. We study the structure of CPbnCP^n_b in further detail and present a new computational approach to the linear optimization problem based on Lucena's suggestion of integrating cutting planes into a Lagrangian relaxation of an integer programming problem. In particular, we show that the separation problem for tree inequalities becomes polynomial in our Lagrangian framework. Finally, computational results are presented. \u
    • …
    corecore