37 research outputs found

    Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems

    Get PDF

    Stability analysis of different control modes of grid-connected converters under different grid conditions

    Get PDF
    With the sustained popularity of renewable energy generation, high penetration of variable energies, e.g., wind and solar, is reshaping the form of power systems and weakening the strength of the grid. The stability mechanism of the grid-connected converter in a weak power network, however, has yet to be evaluated. This paper establishes impedance and transient models for Grid-Following (GFL) as well as Grid-Forming (GFM) converters through the impedance analysis method and equal area criterion analysis method. The stability of these two control methods is then comprehensively studied under small and large interference with different grid conditions. The analytical results show that the GFM control is more stable against small disturbances in a weak network. In contrast, it is prone to a significant disturbance stability problem in the strong grid due to the large grid impedance. The GFL control is more suitable for a vigorous power grid, whereas introducing oscillation in a weak power grid due to its negative damping. Simulation experiments have verified the accuracy of the analytical results

    Controller design-oriented analysis of grid-forming converters for stability robustness enhancement

    Get PDF

    Line Inductance Stability Operation Domain Assessment for Weak Grids With Multiple Constant Power Loads

    Get PDF
    Weak grids are gaining considerable attention since power generation resources are remote from constant power loads (CPLs), which results in low-frequency/harmonic oscillation. Meanwhile, due to the play, and plug demand of modern power system, the line inductance of weak grids often changes, which is also regarded as the variation regarding short circuit ratio (SCR). Based on this, the conventional impedance-based stability operation point assessment approaches should be expanded into stability domain assessment approach considering the line inductance variation. Therefore, the stability-oriented line inductance stability domain assessment approach for weak grids with CPLs is proposed in this paper. Firstly, the source impedance matrix of weak grid, and load admittance matrix of CPLs are separately built. Secondly, an improved stability forbidden domain criterion is proposed through related mapping transformation process, which has lower conservatism than two previous improved stability criteria. Thirdly, the improved stability forbidden domain criterion is switched into the condition that the intermediate matrices are Hurwitz. Meanwhile, the line inductance stability domain is directly obtained through these intermediate matrices, and guardian map theory. Finally, the simulation, and experiment results illustrate that the proposed approach has less conservatism, and high efficiency.This work was supported by National Key Research, and Development Program of China under Grant 2018YFA0702200

    Frequency Coupling Admittance Modeling of Quasi-PR Controlled Inverter and Its Stability Comparative Analysis under the Weak Grid

    Get PDF
    This paper intends to comparatively study the stabilities of grid-connected inverters with three closely related controllers: quasi-proportional resonance (quasi-PR), proportional integral (PI), and proportional resonance (PR) under the weak grid. Firstly, considering the influence of frequency coupling characteristic, a frequency coupling admittance model of quasi-PR controlled inverter is established. Then, the admittance characteristics of the quasi-PR, PI and PR controlled inverters are compared. Admittance characteristics of the PI and PR controlled inverters are similar while the quasi-PR controlled inverter is quite different: the amplitude of the quasi-PR controlled inverter is larger than that of the PI controlled inverter and the phase difference between the two inverters is obvious in the mid-high frequency areas, which are mainly caused by the resonance bandwidth of the quasi-PR controller. Furthermore, the stabilities of the quasi-PR, PI and PR controlled inverters are analyzed. The stabilities of the PI and PR controlled inverters are similar but the quasi-PR controlled inverter is more sensitive to weak grid and high inverter output power. To achieve the same system stability, the voltage outer-loop bandwidth of the quasi-PR controlled inverter should be designed narrower than that of the PI and PR controlled inverters. Finally, experiments verify the correctness of the analyses

    Power Electronics in Renewable Energy Systems

    Get PDF
    corecore