1,708 research outputs found

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Scenario Generation for Cooling, Heating, and Power Loads Using Generative Moment Matching Networks

    Get PDF
    Scenario generations of cooling, heating, and power loads are of great significance for the economic operation and stability analysis of integrated energy systems. In this paper, a novel deep generative network is proposed to model cooling, heating, and power load curves based on a generative moment matching networks (GMMN) where an auto-encoder transforms high-dimensional load curves into low-dimensional latent variables and the maximum mean discrepancy represents the similarity metrics between the generated samples and the real samples. After training the model, the new scenarios are generated by feeding Gaussian noises to the scenario generator of the GMMN. Unlike the explicit density models, the proposed GMMN does not need to artificially assume the probability distribution of the load curves, which leads to stronger universality. The simulation results show that the GMMN not only fits the probability distribution of multi-class load curves well, but also accurately captures the shape (e.g., large peaks, fast ramps, and fluctuation), frequency-domain characteristics, and temporal-spatial correlations of cooling, heating, and power loads. Furthermore, the energy consumption of generated samples closely resembles that of real samples.Comment: This paper has been accepted by CSEE Journal of Power and Energy System

    A Review of Graph Neural Networks and Their Applications in Power Systems

    Get PDF
    Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many publications generalizing deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks) are summarized, and key applications in power systems, such as fault scenario application, time series prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed

    Modeling and Optimization of Active Distribution Network Operation Based on Deep Learning

    Get PDF

    A Distributed Mixed-Integer Framework to Stochastic Optimal Microgrid Control

    Get PDF
    This paper deals with distributed control of microgrids composed of storages, generators, renewable energy sources, critical and controllable loads. We consider a stochastic formulation of the optimal control problem associated to the microgrid that appropriately takes into account the unpredictable nature of the power generated by renewables. The resulting problem is a Mixed-Integer Linear Program and is NP-hard and nonconvex. Moreover, the peculiarity of the considered framework is that no central unit can be used to perform the optimization, but rather the units must cooperate with each other by means of neighboring communication. To solve the problem, we resort to a distributed methodology based on a primal decomposition approach. The resulting algorithm is able to compute high-quality feasible solutions to a two-stage stochastic optimization problem, for which we also provide a theoretical upper bound on the constraint violation. Finally, a Monte Carlo numerical computation on a scenario with a large number of devices shows the efficacy of the proposed distributed control approach. The numerical experiments are performed on realistic scenarios obtained from Generative Adversarial Networks trained an open-source historical dataset of the EU

    Realistic adversarial machine learning to improve network intrusion detection

    Get PDF
    Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.Organizações modernas podem beneficiar significativamente do uso de Inteligência Artificial (AI), e mais especificamente Aprendizagem Automática (ML), para enfrentar a crescente quantidade e sofisticação de ciberataques direcionados aos seus processos de negócio. No entanto, há vários desafios tecnológicos e éticos que comprometem a confiabilidade da AI. Um dos maiores desafios é a falta de robustez, que é uma propriedade essencial para garantir que se usa ML de forma segura. Melhorar a robustez não é uma tarefa fácil porque ML é inerentemente suscetível a exemplos adversos: amostras de dados com perturbações subtis que causam comportamentos inesperados em modelos ML. Engenheiros de ML e profissionais de segurança ainda não têm o conhecimento nem asferramentas necessárias para prevenir tais disrupções, por isso os exemplos adversos representam uma grande ameaça a ML e aos sistemas de Deteção de Intrusões de Rede (NID) que dependem de ML. Esta tese apresenta uma metodologia para uma análise da robustez de múltiplos modelos ML, e um método inteligente para a geração de exemplos adversos realistas em domínios de dados tabulares complexos como o domínio NID: Método de Perturbação com Padrões Adaptativos (A2PM). É demonstrado que um ataque adverso bem-sucedido não é garantidamente um ciberataque bem-sucedido, e que as perturbações adversas só são realistas se forem simultaneamente válidas e coerentes, cumprindo as restrições de domínio de uma rede de computadores real e as restrições específicas de uma certa classe de ciberataque. A2PM pode ser usado para ataques adversos, para iterativamente causar erros de classificação, e para treino adverso, para realizar aumento de dados com amostras ligeiramente perturbadas. Foram efetuados dois casos de estudo para avaliar a sua adequação ao domínio NID. O primeiro verificou que as perturbações preservaram tanto a validade como a coerência em cenários de redes Empresariais e Internet-das-Coisas (IoT), alcançando o realismo. O segundo verificou que o treino adverso com perturbações simples permitiu aos modelos reter uma boa generalização a fluxos de tráfego de rede IoT, para além de serem mais robustos contra exemplos adversos. A principal conclusão desta tese é: os modelos ML podem ser incrivelmente valiosos para melhorar um sistema de cibersegurança, mas as suas próprias vulnerabilidades não devem ser negligenciadas. É essencial continuar os esforços de investigação para melhorar a segurança e a confiabilidade de ML e dos sistemas inteligentes que dependem de ML
    corecore