18,611 research outputs found

    Towards learning domain-independent planning heuristics

    Full text link
    Automated planning remains one of the most general paradigms in Artificial Intelligence, providing means of solving problems coming from a wide variety of domains. One of the key factors restricting the applicability of planning is its computational complexity resulting from exponentially large search spaces. Heuristic approaches are necessary to solve all but the simplest problems. In this work, we explore the possibility of obtaining domain-independent heuristic functions using machine learning. This is a part of a wider research program whose objective is to improve practical applicability of planning in systems for which the planning domains evolve at run time. The challenge is therefore the learning of (corrections of) domain-independent heuristics that can be reused across different planning domains.Comment: Accepted for the IJCAI-17 Workshop on Architectures for Generality and Autonom

    Interpretable deep learning for guided structure-property explorations in photovoltaics

    Full text link
    The performance of an organic photovoltaic device is intricately connected to its active layer morphology. This connection between the active layer and device performance is very expensive to evaluate, either experimentally or computationally. Hence, designing morphologies to achieve higher performances is non-trivial and often intractable. To solve this, we first introduce a deep convolutional neural network (CNN) architecture that can serve as a fast and robust surrogate for the complex structure-property map. Several tests were performed to gain trust in this trained model. Then, we utilize this fast framework to perform robust microstructural design to enhance device performance.Comment: Workshop on Machine Learning for Molecules and Materials (MLMM), Neural Information Processing Systems (NeurIPS) 2018, Montreal, Canad

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201
    • …
    corecore