166 research outputs found

    Largest reduced neighborhood clique cover number revisited

    Full text link
    Let GG be a graph and t≥0t\ge 0. The largest reduced neighborhood clique cover number of GG, denoted by β^t(G){\hat\beta}_t(G), is the largest, overall tt-shallow minors HH of GG, of the smallest number of cliques that can cover any closed neighborhood of a vertex in HH. It is known that β^t(G)≤st{\hat\beta}_t(G)\le s_t, where GG is an incomparability graph and sts_t is the number of leaves in a largest t−t-shallow minor which is isomorphic to an induced star on sts_t leaves. In this paper we give an overview of the properties of β^t(G){\hat\beta}_t(G) including the connections to the greatest reduced average density of GG, or ▽t(G)\bigtriangledown_t(G), introduce the class of graphs with bounded neighborhood clique cover number, and derive a simple lower and an upper bound for this important graph parameter. We announce two conjectures, one for the value of β^t(G){\hat\beta}_t(G), and another for a separator theorem (with respect to a certain measure) for an interesting class of graphs, namely the class of incomparability graphs which we suspect to have a polynomial bounded neighborhood clique cover number, when the size of a largest induced star is bounded.Comment: The results in this paper were presented in 48th Southeastern Conference in Combinatorics, Graph Theory and Computing, Florida Atlantic University, Boca Raton, March 201

    A linear-time algorithm for finding a complete graph minor in a dense graph

    Full text link
    Let g(t) be the minimum number such that every graph G with average degree d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon > 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq (2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change to arguments or result
    • …
    corecore