352 research outputs found

    Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques

    Full text link
    [ES] La Separacón de Fuentes ha sido un tema de intensa investigación en muchas aplicaciones de tratamiento de señaal, cubriendo desde el procesado de voz al análisis de im'agenes biomédicas. Aplicando estas técnicas a los sistemas de reproducci'on espacial de audio, se puede solucionar una limitaci ón importante en la resíntesis de escenas sonoras 3D: la necesidad de disponer de las se ñales individuales correspondientes a cada fuente. El sistema Wave-field Synthesis (WFS) puede sintetizar un campo acústico mediante arrays de altavoces, posicionando varias fuentes en el espacio. Sin embargo, conseguir las señales de cada fuente de forma independiente es normalmente un problema. En este trabajo se propone la utilización de distintas técnicas de separaci'on de fuentes sonoras para obtener distintas pistas a partir de grabaciones mono o estéreo. Varios métodos de separación han sido implementados y comprobados, siendo uno de ellos desarrollado por el autor. Aunque los algoritmos existentes están lejos de conseguir una alta calidad, se han realizado tests subjetivos que demuestran cómo no es necesario obtener una separación óptima para conseguir resultados aceptables en la reproducción de escenas 3D[EN] Source Separation has been a subject of intense research in many signal processing applications, ranging from speech processing to medical image analysis. Applied to spatial audio systems, it can be used to overcome one fundamental limitation in 3D scene resynthesis: the need of having the independent signals for each source available. Wave-field Synthesis is a spatial sound reproduction system that can synthesize an acoustic field by means of loudspeaker arrays and it is also capable of positioning several sources in space. However, the individual signals corresponding to these sources must be available and this is often a difficult problem. In this work, we propose to use Sound Source Separation techniques in order to obtain different tracks from stereo and mono mixtures. Some separation methods have been implemented and tested, having been one of them developed by the author. Although existing algorithms are far from getting hi-fi quality, subjective tests show how it is not necessary an optimum separation for getting acceptable results in 3D scene reproductionCobos Serrano, M. (2007). Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques. http://hdl.handle.net/10251/12515Archivo delegad

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Source Separation for Hearing Aid Applications

    Get PDF

    A psychoacoustic engineering approach to machine sound source separation in reverberant environments

    Get PDF
    Reverberation continues to present a major problem for sound source separation algorithms, due to its corruption of many of the acoustical cues on which these algorithms rely. However, humans demonstrate a remarkable robustness to reverberation and many psychophysical and perceptual mechanisms are well documented. This thesis therefore considers the research question: can the reverberation–performance of existing psychoacoustic engineering approaches to machine source separation be improved? The precedence effect is a perceptual mechanism that aids our ability to localise sounds in reverberant environments. Despite this, relatively little work has been done on incorporating the precedence effect into automated sound source separation. Consequently, a study was conducted that compared several computational precedence models and their impact on the performance of a baseline separation algorithm. The algorithm included a precedence model, which was replaced with the other precedence models during the investigation. The models were tested using a novel metric in a range of reverberant rooms and with a range of other mixture parameters. The metric, termed Ideal Binary Mask Ratio, is shown to be robust to the effects of reverberation and facilitates meaningful and direct comparison between algorithms across different acoustic conditions. Large differences between the performances of the models were observed. The results showed that a separation algorithm incorporating a model based on interaural coherence produces the greatest performance gain over the baseline algorithm. The results from the study also indicated that it may be necessary to adapt the precedence model to the acoustic conditions in which the model is utilised. This effect is analogous to the perceptual Clifton effect, which is a dynamic component of the precedence effect that appears to adapt precedence to a given acoustic environment in order to maximise its effectiveness. However, no work has been carried out on adapting a precedence model to the acoustic conditions under test. Specifically, although the necessity for such a component has been suggested in the literature, neither its necessity nor benefit has been formally validated. Consequently, a further study was conducted in which parameters of each of the previously compared precedence models were varied in each room in order to identify if, and to what extent, the separation performance varied with these parameters. The results showed that the reverberation–performance of existing psychoacoustic engineering approaches to machine source separation can be improved and can yield significant gains in separation performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Advanced algorithms for audio and image processing

    Get PDF
    The objective of the thesis is the development of a set of innovative algorithms around the topic of beamforming in the field of acoustic imaging, audio and image processing, aimed at significantly improving the performance of devices that exploit these computational approaches. Therefore the context is the improvement of devices (ultrasound machines and video/audio devices) already on the market or the development of new ones which, through the proposed studies, can be introduced on new the markets with the launch of innovative high-tech start-ups. This is the motivation and the leitmotiv behind the doctoral work carried out. In fact, in the first part of the work an innovative image reconstruction algorithm in the field of ultrasound biomedical imaging is presented, which is connected to the development of such equipment that exploits the computing opportunities currently offered nowadays at low cost by GPUs (Moore\u2019s law). The proposed target is to obtain a new pipeline of the reconstruction of the image abandoning the architecture of such hardware based In the first part of the thesis I faced the topic of the reconstruction of ultrasound images for applications hypothesized on a software based device through image reconstruction algorithms processed in the frequency domain. An innovative beamforming algorithm based on seismic migration is presented, in which a transformation of the RF data is carried out and the reconstruction algorithm can evaluate a masking of the k-space of the data, speeding up the reconstruction process and reducing the computational burden. The analysis and development of the algorithms responsible for carrying out the thesis has been approached from a feasibility point in an off-line context and on the Matlab platform, processing both synthetic simulated generated data and real RF data: the subsequent development of these algorithms within of the future ultrasound biomedical equipment will exploit an high-performance computing framework capable of processing customized kernel pipelines (henceforth called \u2019filters\u2019) on CPU/GPU. The type of filters implemented involved the topic of Plane Wave Imaging (PWI), an alternative method of acquiring the ultrasound image compared to the state of the art of the traditional standard B-mode which currently exploit sequential sequence of insonification of the sample under examination through focused beams transmitted by the probe channels. The PWI mode is interesting and opens up new scenarios compared to the usual signal acquisition and processing techniques, with the aim of making signal processing in general and image reconstruction in particular faster and more flexible, and increasing importantly the frame rate opens up and improves clinical applications. The innovative idea is to introduce in an offline seismic reconstruction algorithm for ultrasound imaging a further filter, named masking matrix. The masking matrices can be computed offline knowing the system parameters, since they do not depend from acquired data. Moreover, they can be pre-multiplied to propagation matrices, without affecting the overall computational load. Subsequently in the thesis, the topic of beamforming in audio processing on super-direct linear arrays of microphones is addressed. The aim is to make an in depth analysis of two main families of data-independent approaches and algorithms present in the literature by comparing their performances and the trade-off between directivity and frequency invariance, which is not yet known at to the state-of-the-art. The goal is to validate the best algorithm that allows, from the perspective of an implementation, to experimentally verify performance, correlating it with the characteristics and error statistics. Frequency-invariant beam patterns are often required by systems using an array of sensors to process broadband signals. In some experimental conditions, the array spatial aperture is shorter than the involved wavelengths. In these conditions, superdirective beamforming is essential for an efficient system. I present a comparison between two methods that deal with a data-independent beamformer based on a filter-and-sum structure. Both methods (the first one numerical, the second one analytic) formulate a mathematical convex minimization problem, in which the variables to be optimized are the filters coefficients or frequency responses. In the described simulations, I have chosen a geometry and a set-up of parameters that allows us to make a fair comparison between the performances of the two different design methods analyzed. In particular, I addressed a small linear array for audio capture with different purposes (hearing aids, audio surveillance system, video-conference system, multimedia device, etc.). The research activity carried out has been used for the launch of a high-tech device through an innovative start-up in the field of glasses/audio devices (https://acoesis.com/en/). It has been proven that the proposed algorithm gives the possibility of obtaining higher performances than the state of the art of similar algorithms, additionally providing the possibility of connecting directivity or better generalized directivity to the statistics of phase errors and gain of sensors, extremely important in superdirective arrays in the case of real and industrial implementation. Therefore, the method proposed by the comparison is innovative because it quantitatively links the physical construction characteristics of the array to measurable and experimentally verifiable quantities, making the real implementation process controllable. The third topic faced is the reconstruction of the Room Impluse Response (RIR) using audio processing blind methods. Given an unknown audio source, the estimation of time differences-of-arrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior blind works have improved the estimate of TDOAs by means of different algorithmic solutions and optimization strategies, while always sticking to the case N = 2 microphones. But what if we can obtain a direct improvement in performance by just increasing N? In the fourth Chapter I tried to investigate this direction, showing that, despite the arguable simplicity, this is capable of (sharply) improving upon state-of-the-art blind channel identification methods based on CCI, without modifying the computational pipeline. Inspired by our results, we seek to warm up the community and the practitioners by paving the way (with two concrete, yet preliminary, examples) towards joint approaches in which advances in the optimization are combined with an increased number of microphones, in order to achieve further improvements. Sound source localisation applications can be tackled by inferring the time-difference-of-arrivals (TDOAs) between a sound-emitting source and a set of microphones. Among the referred applications, one can surely list room-aware sound reproduction, room geometry\u2019s estimation, speech enhancement. Despite a broad spectrum of prior works estimate TDOAs from a known audio source, even when the signal emitted from the acoustic source is unknown, TDOAs can be inferred by comparing the signals received at two (or more) spatially separated microphones, using the notion of cross-corrlation identity (CCI). This is the key theoretical tool, not only, to make the ordering of microphones irrelevant during the acquisition stage, but also to solve the problem as blind channel identification, robustly and reliably inferring TDOAs from an unknown audio source. However, when dealing with natural environments, such \u201cmutual agreement\u201d between microphones can be tampered by a variety of audio ambiguities such as ambient noise. Furthermore, each observed signal may contain multiple distorted or delayed replicas of the emitting source due to reflections or generic boundary effects related to the (closed) environment. Thus, robustly estimating TDOAs is surely a challenging problem and CCI-based approaches cast it as single-input/multi-output blind channel identification. Such methods promote robustness in the estimate from the methodological standpoint: using either energy-based regularization, sparsity or positivity constraints, while also pre-conditioning the solution space. Last but not least, the Acoustic Imaging is an imaging modality that exploits the propagation of acoustic waves in a medium to recover the spatial distribution and intensity of sound sources in a given region. Well known and widespread acoustic imaging applications are, for example, sonar and ultrasound. There are active and passive imaging devices: in the context of this thesis I consider a passive imaging system called Dual Cam that does not emit any sound but acquires it from the environment. In an acoustic image each pixel corresponds to the sound intensity of the source, the whose position is described by a particular pair of angles and, in the case in which the beamformer can, as in our case, work in near-field, from a distance on which the system is focused. In the last part of this work I propose the use of a new modality characterized by a richer information content, namely acoustic images, for the sake of audio-visual scene understanding. Each pixel in such images is characterized by a spectral signature, associated to a specific direction in space and obtained by processing the audio signals coming from an array of microphones. By coupling such array with a video camera, we obtain spatio-temporal alignment of acoustic images and video frames. This constitutes a powerful source of self-supervision, which can be exploited in the learning pipeline we are proposing, without resorting to expensive data annotations. However, since 2D planar arrays are cumbersome and not as widespread as ordinary microphones, we propose that the richer information content of acoustic images can be distilled, through a self-supervised learning scheme, into more powerful audio and visual feature representations. The learnt feature representations can then be employed for downstream tasks such as classification and cross-modal retrieval, without the need of a microphone array. To prove that, we introduce a novel multimodal dataset consisting in RGB videos, raw audio signals and acoustic images, aligned in space and synchronized in time. Experimental results demonstrate the validity of our hypothesis and the effectiveness of the proposed pipeline, also when tested for tasks and datasets different from those used for training. Chapter 6 closes the thesis, presenting a development activity of a new Dual Cam POC to build-up from it a spin-off, assuming to apply for an innovation project for hi-tech start- ups (such as a SME instrument H2020) for a 50Keuro grant, following the idea of the technology transfer. A deep analysis of the reference market, technologies and commercial competitors, business model and the FTO of intellectual property is then conducted. Finally, following the latest technological trends (https://www.flir.eu/products/si124/) a new version of the device (planar audio array) with reduced dimensions and improved technical characteristics is simulated, simpler and easier to use than the current one, opening up new interesting possibilities of development not only technical and scientific but also in terms of business fallout

    Using deep learning methods for supervised speech enhancement in noisy and reverberant environments

    Get PDF
    In real world environments, the speech signals received by our ears are usually a combination of different sounds that include not only the target speech, but also acoustic interference like music, background noise, and competing speakers. This interference has negative effect on speech perception and degrades the performance of speech processing applications such as automatic speech recognition (ASR), speaker identification, and hearing aid devices. One way to solve this problem is using source separation algorithms to separate the desired speech from the interfering sounds. Many source separation algorithms have been proposed to improve the performance of ASR systems and hearing aid devices, but it is still challenging for these systems to work efficiently in noisy and reverberant environments. On the other hand, humans have a remarkable ability to separate desired sounds and listen to a specific talker among noise and other talkers. Inspired by the capabilities of human auditory system, a popular method known as auditory scene analysis (ASA) was proposed to separate different sources in a two stage process of segmentation and grouping. The main goal of source separation in ASA is to estimate time frequency masks that optimally match and separate noise signals from a mixture of speech and noise. In this work, multiple algorithms are proposed to improve upon source separation in noisy and reverberant acoustic environment. First, a simple and novel algorithm is proposed to increase the discriminability between two sound sources by scaling (magnifying) the head-related transfer function of the interfering source. Experimental results from applications of this algorithm show a significant increase in the quality of the recovered target speech. Second, a time frequency masking-based source separation algorithm is proposed that can separate a male speaker from a female speaker in reverberant conditions by using the spatial cues of the source signals. Furthermore, the proposed algorithm has the ability to preserve the location of the sources after separation. Three major aims are proposed for supervised speech separation based on deep neural networks to estimate either the time frequency masks or the clean speech spectrum. Firstly, a novel monaural acoustic feature set based on a gammatone filterbank is presented to be used as the input of the deep neural network (DNN) based speech separation model, which shows significant improvement in objective speech intelligibility and speech quality in different testing conditions. Secondly, a complementary binaural feature set is proposed to increase the ability of source separation in adverse environment with non-stationary background noise and high reverberation using 2-channel recordings. Experimental results show that the combination of spatial features with this complementary feature set improves significantly the speech intelligibility and speech quality in noisy and reverberant conditions. Thirdly, a novel dilated convolution neural network is proposed to improve the generalization of the monaural supervised speech enhancement model to different untrained speakers, unseen noises and simulated rooms. This model increases the speech intelligibility and speech quality of the recovered speech significantly, while being computationally more efficient and requiring less memory in comparison to other models. In addition, the proposed model is modified with recurrent layers and dilated causal convolution layers for real-time processing. This model is causal which makes it suitable for implementation in hearing aid devices and ASR system, while having fewer trainable parameters and using only information about previous time frames in output prediction. The main goal of the proposed algorithms are to increase the intelligibility and the quality of the recovered speech from noisy and reverberant environments, which has the potential to improve both speech processing applications and signal processing strategies for hearing aid and cochlear implant technology

    Complex Neural Networks for Audio

    Get PDF
    Audio is represented in two mathematically equivalent ways: the real-valued time domain (i.e., waveform) and the complex-valued frequency domain (i.e., spectrum). There are advantages to the frequency-domain representation, e.g., the human auditory system is known to process sound in the frequency-domain. Furthermore, linear time-invariant systems are convolved with sources in the time-domain, whereas they may be factorized in the frequency-domain. Neural networks have become rather useful when applied to audio tasks such as machine listening and audio synthesis, which are related by their dependencies on high quality acoustic models. They ideally encapsulate fine-scale temporal structure, such as that encoded in the phase of frequency-domain audio, yet there are no authoritative deep learning methods for complex audio. This manuscript is dedicated to addressing the shortcoming. Chapter 2 motivates complex networks by their affinity with complex-domain audio, while Chapter 3 contributes methods for building and optimizing complex networks. We show that the naive implementation of Adam optimization is incorrect for complex random variables and show that selection of input and output representation has a significant impact on the performance of a complex network. Experimental results with novel complex neural architectures are provided in the second half of this manuscript. Chapter 4 introduces a complex model for binaural audio source localization. We show that, like humans, the complex model can generalize to different anatomical filters, which is important in the context of machine listening. The complex model\u27s performance is better than that of the real-valued models, as well as real- and complex-valued baselines. Chapter 5 proposes a two-stage method for speech enhancement. In the first stage, a complex-valued stochastic autoencoder projects complex vectors to a discrete space. In the second stage, long-term temporal dependencies are modeled in the discrete space. The autoencoder raises the performance ceiling for state of the art speech enhancement, but the dynamic enhancement model does not outperform other baselines. We discuss areas for improvement and note that the complex Adam optimizer improves training convergence over the naive implementation

    Speech enhancement algorithms for audiological applications

    Get PDF
    Texto en inglés y resumen en inglés y españolPremio Extraordinario de Doctorado de la UAH en el año académico 2013-2014La mejora de la calidad de la voz es un problema que, aunque ha sido abordado durante muchos años, aún sigue abierto. El creciente auge de aplicaciones tales como los sistemas manos libres o de reconocimiento de voz automático y las cada vez mayores exigencias de las personas con pérdidas auditivas han dado un impulso definitivo a este área de investigación. Esta tesis doctoral se centra en la mejora de la calidad de la voz en aplicaciones audiológicas. La mayoría del trabajo de investigación desarrollado en esta tesis está dirigido a la mejora de la inteligibilidad de la voz en audífonos digitales, teniendo en cuenta las limitaciones de este tipo de dispositivos. La combinación de técnicas de separación de fuentes y filtrado espacial con técnicas de aprendizaje automático y computación evolutiva ha originado novedosos e interesantes algoritmos que son incluidos en esta tesis. La tesis esta dividida en dos grandes bloques. El primer bloque contiene un estudio preliminar del problema y una exhaustiva revisión del estudio del arte sobre algoritmos de mejora de la calidad de la voz, que sirve para definir los objetivos de esta tesis. El segundo bloque contiene la descripción del trabajo de investigación realizado para cumplir los objetivos de la tesis, así como los experimentos y resultados obtenidos. En primer lugar, el problema de mejora de la calidad de la voz es descrito formalmente en el dominio tiempo-frecuencia. Los principales requerimientos y restricciones de los audífonos digitales son definidas. Tras describir el problema, una amplia revisión del estudio del arte ha sido elaborada. La revisión incluye algoritmos de mejora de la calidad de la voz mono-canal y multi-canal, considerando técnicas de reducción de ruido y técnicas de separación de fuentes. Además, la aplicación de estos algoritmos en audífonos digitales es evaluada. El primer problema abordado en la tesis es la separación de fuentes sonoras en mezclas infra-determinadas en el dominio tiempo-frecuencia, sin considerar ningún tipo de restricción computacional. El rendimiento del famoso algoritmo DUET, que consigue separar fuentes de voz con solo dos mezclas, ha sido evaluado en diversos escenarios, incluyendo mezclas lineales y binaurales no reverberantes, mezclas reverberantes, y mezclas de voz con otro tipo de fuentes tales como ruido y música. El estudio revela la falta de robustez del algoritmo DUET, cuyo rendimiento se ve seriamente disminuido en mezclas reverberantes, mezclas binaurales, y mezclas de voz con música y ruido. Con el objetivo de mejorar el rendimiento en estos casos, se presenta un novedoso algoritmo de separación de fuentes que combina la técnica de clustering mean shift con la base del algoritmo DUET. La etapa de clustering del algoritmo DUET, que esta basada en un histograma ponderado, es reemplazada por una modificación del algoritmo mean shift, introduciendo el uso de un kernel Gaussiano ponderado. El análisis de los resultados obtenidos muestran una clara mejora obtenida por el algoritmo propuesto en relación con el algoritmo DUET original y una modificación que usa k-means. Además, el algoritmo propuesto ha sido extendido para usar un array de micrófonos de cualquier tamaño y geometría. A continuación se ha abordado el problema de la enumeración de fuentes de voz, que esta relacionado con el problema de separación de fuentes. Se ha propuesto un novedoso algoritmo basado en un criterio de teoría de la información y en la estimación de los retardos relativos causados por las fuentes entre un par de micrófonos. El algoritmo ha obtenido excelente resultados y muestra robustez en la enumeración de mezclas no reverberantes de hasta 5 fuentes de voz. Además se demuestra la potencia del algoritmo para la enumeración de fuentes en mezclas reverberantes. El resto de la tesis esta centrada en audífonos digitales. El primer problema tratado es el de la mejora de la inteligibilidad de la voz en audífonos monoaurales. En primer lugar, se realiza un estudio de los recursos computacionales disponibles en audífonos digitales de ultima generación. Los resultados de este estudio se han utilizado para limitar el coste computacional de los algoritmos de mejora de la calidad de la voz para audífonos propuestos en esta tesis. Para resolver este primer problema se propone un algoritmo mono-canal de mejora de la calidad de la voz de bajo coste computacional. El objetivo es la estimación de una mascara tiempo-frecuencia continua para obtener el mayor parámetro PESQ de salida. El algoritmo combina una versión generalizada del estimador de mínimos cuadrados con un algoritmo de selección de características a medida, utilizando un novedoso conjunto de características. El algoritmo ha obtenido resultados excelentes incluso con baja relación señal a ruido. El siguiente problema abordado es el diseño de algoritmos de mejora de la calidad de la voz para audífonos binaurales comunicados de forma inalámbrica. Estos sistemas tienen un problema adicional, y es que la conexión inalámbrica aumenta el consumo de potencia. El objetivo en esta tesis es diseñar algoritmos de mejora de la calidad de la voz de bajo coste computacional que incrementen la eficiencia energética en audífonos binaurales comunicados de forma inalámbrica. Se han propuesto dos soluciones. La primera es un algoritmo de extremado bajo coste computacional que maximiza el parámetro WDO y esta basado en la estimación de una mascara binaria mediante un discriminante cuadrático que utiliza los valores ILD e ITD de cada punto tiempo-frecuencia para clasificarlo entre voz o ruido. El segundo algoritmo propuesto, también de bajo coste, utiliza además la información de puntos tiempo-frecuencia vecinos para estimar la IBM mediante una versión generalizada del LS-LDA. Además, se propone utilizar un MSE ponderado para estimar la IBM y maximizar el parámetro WDO al mismo tiempo. En ambos algoritmos se propone un esquema de transmisión eficiente energéticamente, que se basa en cuantificar los valores de amplitud y fase de cada banda de frecuencia con un numero distinto de bits. La distribución de bits entre frecuencias se optimiza mediante técnicas de computación evolutivas. El ultimo trabajo incluido en esta tesis trata del diseño de filtros espaciales para audífonos personalizados a una persona determinada. Los coeficientes del filtro pueden adaptarse a una persona siempre que se conozca su HRTF. Desafortunadamente, esta información no esta disponible cuando un paciente visita el audiólogo, lo que causa perdidas de ganancia y distorsiones. Con este problema en mente, se han propuesto tres métodos para diseñar filtros espaciales que maximicen la ganancia y minimicen las distorsiones medias para un conjunto de HRTFs de diseño

    Binary Masking & Speech Intelligibility

    Get PDF
    corecore