4,576 research outputs found

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    What Does Aspect-Oriented Programming Mean for Functional Programmers?

    Get PDF
    Aspect-Oriented Programming (AOP) aims at modularising crosscutting concerns that show up in software. The success of AOP has been almost viral and nearly all areas in Software Engineering and Programming Languages have become "infected" by the AOP bug in one way or another. Interestingly the functional programming community (and, in particular, the pure functional programming community) seems to be resistant to the pandemic. The goal of this paper is to debate the possible causes of the functional programming community's resistance and to raise awareness and interest by showcasing the benefits that could be gained from having a functional AOP language. At the same time, we identify the main challenges and explore the possible design-space

    Reaching for the Star: Tale of a Monad in Coq

    Get PDF
    Monadic programming is an essential component in the toolbox of functional programmers. For the pure and total programmers, who sometimes navigate the waters of certified programming in type theory, it is the only means to concisely implement the imperative traits of certain algorithms. Monads open up a portal to the imperative world, all that from the comfort of the functional world. The trend towards certified programming within type theory begs the question of reasoning about such programs. Effectful programs being encoded as pure programs in the host type theory, we can readily manipulate these objects through their encoding. In this article, we pursue the idea, popularized by Maillard [Kenji Maillard, 2019], that every monad deserves a dedicated program logic and that, consequently, a proof over a monadic program ought to take place within a Floyd-Hoare logic built for the occasion. We illustrate this vision through a case study on the SimplExpr module of CompCert [Xavier Leroy, 2009], using a separation logic tailored to reason about the freshness of a monadic gensym

    Variable elimination for building interpreters

    Get PDF
    In this paper, we build an interpreter by reusing host language functions instead of recoding mechanisms of function application that are already available in the host language (the language which is used to build the interpreter). In order to transform user-defined functions into host language functions we use combinatory logic : lambda-abstractions are transformed into a composition of combinators. We provide a mechanically checked proof that this step is correct for the call-by-value strategy with imperative features.Comment: 33 page

    Achieving High-Performance the Functional Way: A Functional Pearl on Expressing High-Performance Optimizations as Rewrite Strategies

    Get PDF
    Optimizing programs to run efficiently on modern parallel hardware is hard but crucial for many applications. The predominantly used imperative languages - like C or OpenCL - force the programmer to intertwine the code describing functionality and optimizations. This results in a portability nightmare that is particularly problematic given the accelerating trend towards specialized hardware devices to further increase efficiency. Many emerging DSLs used in performance demanding domains such as deep learning or high-performance image processing attempt to simplify or even fully automate the optimization process. Using a high-level - often functional - language, programmers focus on describing functionality in a declarative way. In some systems such as Halide or TVM, a separate schedule specifies how the program should be optimized. Unfortunately, these schedules are not written in well-defined programming languages. Instead, they are implemented as a set of ad-hoc predefined APIs that the compiler writers have exposed. In this functional pearl, we show how to employ functional programming techniques to solve this challenge with elegance. We present two functional languages that work together - each addressing a separate concern. RISE is a functional language for expressing computations using well known functional data-parallel patterns. ELEVATE is a functional language for describing optimization strategies. A high-level RISE program is transformed into a low-level form using optimization strategies written in ELEVATE . From the rewritten low-level program high-performance parallel code is automatically generated. In contrast to existing high-performance domain-specific systems with scheduling APIs, in our approach programmers are not restricted to a set of built-in operations and optimizations but freely define their own computational patterns in RISE and optimization strategies in ELEVATE in a composable and reusable way. We show how our holistic functional approach achieves competitive performance with the state-of-the-art imperative systems Halide and TVM

    A Sound and Complete Abstraction for Reasoning about Parallel Prefix Sums

    Get PDF
    Prefix sums are key building blocks in the implementation of many concurrent software applications, and recently much work has gone into efficiently implementing prefix sums to run on massively par-allel graphics processing units (GPUs). Because they lie at the heart of many GPU-accelerated applications, the correctness of prefix sum implementations is of prime importance. We introduce a novel abstraction, the interval of summations, that allows scalable reasoning about implementations of prefix sums. We present this abstraction as a monoid, and prove a sound-ness and completeness result showing that a generic sequential pre-fix sum implementation is correct for an array of length n if and only if it computes the correct result for a specific test case when instantiated with the interval of summations monoid. This allows correctness to be established by running a single test where the in

    Dynamic Separation Logic

    Full text link
    This paper introduces a dynamic logic extension of separation logic. The assertion language of separation logic is extended with modalities for the five types of the basic instructions of separation logic: simple assignment, look-up, mutation, allocation, and de-allocation. The main novelty of the resulting dynamic logic is that it allows to combine different approaches to resolving these modalities. One such approach is based on the standard weakest precondition calculus of separation logic. The other approach introduced in this paper provides a novel alternative formalization in the proposed dynamic logic extension of separation logic. The soundness and completeness of this axiomatization has been formalized in the Coq theorem prover
    • …
    corecore