411 research outputs found

    Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics

    Full text link
    [EN] This paper studies various functors between (lattice-valued) topology and (lattice-valued) bitopology, including the expected “doubling” functor Ed : L-Top → L-BiTop and the “cross” functor E× : L-BiTop → L2-Top introduced in this paper, both of which are extremely well-behaved strict, concrete, full embeddings. Given the greater simplicity of lattice-valued topology vis-a-vis lattice-valued bitopology and the fact that the class of L2-Top’s is strictly smaller than the class of L-Top’s encompassing fixed-basis topology, the class of E×’s makes the case that lattice-valued bitopology is categorically redundant. As a special application, traditional bitopology as represented by BiTop is (isomorphic in an extremely well-behaved way to) a strict subcategory of 4-Top, where 4 is the four element Boolean algebra; this makes the case that traditional bitopology is a special case of a much simpler fixed-basis topology.Support of Youngstown State University via a sabbatical for the 2005–2006 academic year is gratefully acknowledged.Rodabaugh, S. (2008). Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics. Applied General Topology. 9(1):77-108. doi:10.4995/agt.2008.1871.SWORD771089

    Stone-type representations and dualities for varieties of bisemilattices

    Full text link
    In this article we will focus our attention on the variety of distributive bisemilattices and some linguistic expansions thereof: bounded, De Morgan, and involutive bisemilattices. After extending Balbes' representation theorem to bounded, De Morgan, and involutive bisemilattices, we make use of Hartonas-Dunn duality and introduce the categories of 2spaces and 2spaces⋆^{\star}. The categories of 2spaces and 2spaces⋆^{\star} will play with respect to the categories of distributive bisemilattices and De Morgan bisemilattices, respectively, a role analogous to the category of Stone spaces with respect to the category of Boolean algebras. Actually, the aim of this work is to show that these categories are, in fact, dually equivalent

    Structured frames

    Get PDF
    Bibliography: pages 141-144.Ehresmann in 1959 first articulated the view that a complete lattice with an appropriate distributivity property deserved to be studied as a generalized topological space in its own right. He called the lattice a local lattice. Here is the distributivity property: x ∧ Vxα = V(x∧xα). A map of local lattices should preserve finite meets and arbitrary joins (and hence top and bottom elements). Dowker and Papert introduced the term frame for a local lattice and extended many results of topology to frame theory. At the 1981 international conference on categorical algebra and topology at Cape Town University a suggestion was made that a study of "uniform frames" (whatever they might be) would be an appropriate and useful start to a project concerned with examining, from a lattice theoretical point of view, the many topological structures which have gained acceptance in the topologist's arsenal of useful tools. It was felt that many of the pre-requisites for such a study had been established, and in fact one of the themes of the conference was the growing role of lattice theory in topology. The suggestion was eagerly accepted, and this thesis is the result

    Dual attachment pairs in categorically-algebraic topology

    Full text link
    [EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inherent topology, but are capable of providing a natural transformation between two topological theories. We also outline a more general setting for developing the attachment theory, motivated by the concept of (L,M)-fuzzy topological space of T. Kubiak and A. Sostak.This research was partially supported by the ESF Project of the University of Latvia No. 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.Frascella, A.; Guido, C.; Solovyov, SA. (2011). Dual attachment pairs in categorically-algebraic topology. Applied General Topology. 12(2):101-134. doi:10.4995/agt.2011.1646.SWORD10113412

    Full Issue

    Get PDF

    Algebraic Topology for Data Scientists

    Full text link
    This book gives a thorough introduction to topological data analysis (TDA), the application of algebraic topology to data science. Algebraic topology is traditionally a very specialized field of math, and most mathematicians have never been exposed to it, let alone data scientists, computer scientists, and analysts. I have three goals in writing this book. The first is to bring people up to speed who are missing a lot of the necessary background. I will describe the topics in point-set topology, abstract algebra, and homology theory needed for a good understanding of TDA. The second is to explain TDA and some current applications and techniques. Finally, I would like to answer some questions about more advanced topics such as cohomology, homotopy, obstruction theory, and Steenrod squares, and what they can tell us about data. It is hoped that readers will acquire the tools to start to think about these topics and where they might fit in.Comment: 322 pages, 69 figures, 5 table

    Characterization of stratified L-topological spaces by convergence of stratified L-filters

    Get PDF
    For the case where L is an ecl-premonoid, we explore various characterizations of SL-topological spaces, in particular characterization in terms of a convergence function lim: FS L(X) ! LX. We find we have to introduce a new axiom , L on the lim function in order to completely describe SL-topological spaces, which is not required in the case where L is a frame. We generalize the classical Kowalski and Fischer axioms to the lattice context and examine their relationship to the convergence axioms. We define the category of stratified L-generalized convergence spaces, as a generalization of the classical convergence spaces and investigate conditions under which it contains the category of stratified L-topological spaces as a reflective subcategory. We investigate some subcategories of the category of stratified L-generalized convergence spaces obtained by generalizing various classical convergence axioms

    The Riddle of Gravitation

    Full text link
    There is no doubt that both the special and general theories of relativity capture the imagination. The anti-intuitive properties of the special theory of relativity and its deep philosophical implications, the bizzare and dazzling predictions of the general theory of relativity: the curvature of spacetime, the exotic characteristics of black holes, the bewildering prospects of gravitational waves, the discovery of astronomical objects as quasers and pulsers, the expansion and the (possible) recontraction of the universe..., are all breathtaking phenomena. In this paper, we give a philosophical non-technical treatment of both the special and the general theory of relativity together with an exposition of some of the latest physical theories. We then give an outline of an axiomatic approach to relativity theories due to Andreka and Nemeti that throws light on the logical structure of both theories. This is followed by an exposition of some of the bewildering results established by Andreka and Nemeti concerning the foundations of mathematics using the notion of relativistic computers. We next give a survey on the meaning and philosophical implications of the the quantum theory and end the paper by an imaginary debate between Einstein and Neils Bohr reflecting both Einstein's and Bohr's philosophical views on the quantum world. The paper is written in a somewhat untraditional manner; there are too many footnotes. In order not to burden the reader with all the details, we have collected the more advanced material the footnotes. We think that this makes the paper easier to read and simpler to follow. The paper in full is adressed more to experts.Comment: 40 pages, LaTeX-fil
    • 

    corecore