66,187 research outputs found

    Facets for Art Gallery Problems

    Full text link
    The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The problem is known to be NP-hard, and its inherent continuous structure (with both the set of points that need to be guarded and the set of points that can be used for guarding being uncountably infinite) makes it difficult to apply a straightforward formulation as an Integer Linear Program. We use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded. Particularly useful are cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time. We also characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our approach. Our cutting plane technique yields a significant improvement in terms of speed and solution quality due to considerably reduced integrality gaps as compared to the approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl

    Selective Use of the Executive Immunity Power: A Denial of Due Process?

    Get PDF
    Attacks on the government\u27s power to grant immunity to cooperative witnesses have been premised on several grounds, including the due process clause of the fifth amendment. It is upon this clause that the United States District Court of the Southern District of New York based a decision that a defendant was denied due process when the government refused to immunize him after granting immunization to its own witnesses. This article examines traditional arguments against challenging a prosecutor\u27s immunity discretion, the procedural and substantive factors necessary in substantiating a defendant\u27s due process claim, and the effect of immunization on the government\u27s burden of proof in future prosecutions

    Unital Quantum Channels - Convex Structure and Revivals of Birkhoff's Theorem

    Get PDF
    The set of doubly-stochastic quantum channels and its subset of mixtures of unitaries are investigated. We provide a detailed analysis of their structure together with computable criteria for the separation of the two sets. When applied to O(d)-covariant channels this leads to a complete characterization and reveals a remarkable feature: instances of channels which are not in the convex hull of unitaries can return to it when either taking finitely many copies of them or supplementing with a completely depolarizing channel. In these scenarios this implies that a channel whose noise initially resists any environment-assisted attempt of correction can become perfectly correctable.Comment: 31 page

    Experimental Observation of Quantum Correlations in Modular Variables

    Full text link
    We experimentally detect entanglement in modular position and momentum variables of photon pairs which have passed through DD-slit apertures. We first employ an entanglement criteria recently proposed in [Phys. Rev. Lett. {\bf 106}, 210501 (2011)], using variances of the modular variables. We then propose an entanglement witness for modular variables based on the Shannon entropy, and test it experimentally. Finally, we derive criteria for Einstein-Podolsky-Rosen-Steering correlations using variances and entropy functions. In both cases, the entropic criteria are more successful at identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom
    corecore